
september 2013 | vol. 56 | no. 9 | commUnications of thE acm 31

V
viewpoints

I
m

a
g

e
 f

r
o

m
 S

h
u

t
t

e
r

S
t

o
C

k
.C

o
m

D
e s p i T e h i s C e n T r a l place in
the development of West-
ern philosophical thought,
René Descartes is only oc-
casionally cited in comput-

ing literature. However, the way we
think about hardware and software
tends to follow the template estab-
lished by centuries of Dualist phi-
losophy and thousands of years of
human spiritual belief. Hardware is
the body. Encumbered by the mate-
rial world it is constrained by physi-
cal laws and will eventually succumb
to the ravages of time. Software is
the soul. The essence of code is its
immateriality. An invisible spark of
life, it controls the operation of the
machine and can transmigrate from
one host to another. It is bound not
by the laws of this world but by those
of another. The distinction between
hardware and software partitions the
careers, journals, conferences, inter-
est groups, and businesses of com-
puting into separate camps. In recent
years it has also shaped the work of
historians of computing, as software
history has become an increasingly
popular area of research.

This column explores some of the
fundamental challenges software pos-
es to historians and draws upon my
own historical research in the area to
argue that software never really exists
in a pure, non-material form. Instead,
software has always been treated his-
torically as a “package” including more
than just computer code—though what

has been meant by this has changed
significantly over time.

However, as you are reading Com-
munications you probably know a lot
about the insides of computers and
may very well be an academic com-
puter scientist. So let me admit two
objections to my opening general-
ization before I move on with the
historical reflections. First, the lines
between hardware and software have

become less clear over the years.
Technologies such as FPGAs, virtual
machines, APIs, and microcoded in-
struction sets complicate the simple
picture of programs directly manipu-
lating hardware. Second, the recent
Turing Centenary has reminded us
that the founding insight of theoreti-
cal computer science is that hardware
and software are, from the viewpoint
of computability, almost entirely in-

historical reflections
software and souls;
programs and packages
How can historians tell stories about software
without focusing solely on the code itself?

DOI:10.1145/2500131 Thomas Haigh

32 commUnications of thE acm | september 2013 | vol. 56 | no. 9

viewpoints

nologies, such as programming lan-
guages, mostly written by the people
responsible for creating them.

What we do not have, as yet, is a
history of software itself; a history
of software as a thing or—as a mu-
seum curator might call it—an arti-
fact. Such a history might appeal far
beyond the (rather small) group of
people who think of themselves pri-
marily as historians of information
technology. Enthusiasm among hu-
manities and media studies scholars
to come to grips with software has
recently produced a somewhat diz-
zying range of self-proclaimed fields
and movements, including software
studies, critical code studies, video
game studies, and demoscene stud-
ies. While these identities are still in
flux, and media theorists can be rath-
er fickle in chasing after hot new top-
ics, they indicate a broad interest in
understanding software as a new and
complicated kind of artifact.

Perhaps the most relevant new
agenda comes from “platform stud-
ies,” launched by Ian Bogost and
Nick Montfort with their beautifully
crafted book Racing the Beam, an
analysis of Atari’s VCS game console
that was a fixture in American base-
ments and living rooms during the
late 1970s and early 1980s. The focus
on platforms recognizes the fact that
software without hardware is noth-
ing; as is hardware without software.
Each gives meaning to the other. This
is particularly apparent to program-
mers of the VCS, whose 128 bytes of
memory could not accommodate a
bitmapped screen. Game code was
timed precisely against the speed at
which the television’s electron beam
moved across its screen. Thus a pro-
gram would structure all its activ-
ity around the need to place the bits
representing the next screen line into
the register controlling video out-
put before the TV began to draw that
line. This is an extreme case, but it re-
minds us that platforms are the most
enduring technological systems in
the world of computing, and that all
software is shaped by the constraints
of one platform or another. The plat-
form approach also holds out the
prospect for meaningful engagement
between historians and other kinds of
humanities and media scholars.

um is now working on a supplemental
exhibit focused on software, and it will
be interesting to see what solutions its
curators come up with.

Archiving software presents its own
challenges. Even if the medium hold-
ing the code is preserved then it is far
from certain the bits will still be read-
able decades from now (a particular
problem for magnetic media) or that
any system able to run the software
will still exist. A growing community
of enthusiasts has developed online
repositories, emulators, and physical
archives to address these issues sys-
tematically. Coverage is pretty good in
areas where collection is easy and nos-
talgia rampant, such as video games
where Henry Lowood at Stanford Uni-
versity has built a substantial archive
and most classic titles can easily be
downloaded and played from amateur
collections of dubious legality. Things
like accounting software or online sys-
tems are much less likely to survive.

conceptual challenges
Thinking about the challenges in-
volved in displaying and archiving
software makes me glad that, as a
historian who works on books and
articles rather than exhibits, I can dis-
miss them as fascinating problems
for someone else to solve. We histori-
ans of technology like to think of our-
selves as storytellers, writing narra-
tives in which technology, in one way
or another, serves as our protagonist
or plays a major role. This sidesteps
some of the practical problems faced
by curators and archivists but, alas,
raises a whole set of new problems.
The most important of which is: What
is software anyway?

Existing historical writing on soft-
ware has focused on just a handful of
topics. One has been the early history
of software engineering, particularly
the seminal NATO Software Engineer-
ing conference held in the Bavarian
Alps in 1968. Another has been the
history of the software industry, given
a thorough overview by Martin Camp-
bell-Kelly in his book From Airline Res-
ervations to Sonic the Hedgehog. There
has also been a significant body of
work about programmers, the people
who produce software. Finally we have
a significant number of historical ac-
counts of particular software tech-

terchangeable. Still, a primary con-
sequence of this insight has been
to allow theorists to ignore issues of
platforms and architectures entirely,
further reinforcing our sense of pro-
grams and algorithms as creatures of
pure logic unsullied by materiality.

software in museums and archives
Museum curators and exhibit plan-
ners are the people challenged most
directly by the special nature of soft-
ware. Exhibiting computer hardware is
not so different from exhibiting a stone
axe head or a stuffed Dodo. You put
the object in a glass display case, next
to an identifying label. Visitors peer
briefly at it as they walk by, and a few
stop to glance at the text. The objects
are arranged to tell some kind of story
as the visitor walks. Usually it is a story
of progress over time, and so the visitor
notices objects in the cases becoming
prettier or more complicated the clos-
er he or she gets to the gift shop. These
days there tends to be more focus on
the story and less on the clutter, while
interactive screens are supplementing
wordy explanations. The stuffed Dodo
and the mainframe would both ben-
efit, should space and funding permit,
from being placed in a diorama repre-
senting their natural habitat.

You cannot put a soul in a display
case. Curators at leading museums
such as the Science Museum in Lon-
don and the Deutsches Museum in
Munich have long been aware of the
importance of software and have
been grappling for a while with the
question of how to collect and display
it. Traditional approaches are not
very satisfactory. One could line up
cases full of disks, tapes, and shrink-
wrapped boxes to represent the mass-
market products of the late-1970s
and 1980s, but this would not tell us
much about the software itself and
would not work at all for early soft-
ware, enterprise software, internally
produced software, or today’s down-
loaded applications.

The challenge is daunting, which is
why despite years of discussion no ma-
jor museum has attempted a full-scale
exhibit on the history of software. Even
the Computer History Museum in Sili-
con Valley included relatively little on
software in its recently unveiled perma-
nent exhibit. To remedy this the muse-

viewpoints

september 2013 | vol. 56 | no. 9 | commUnications of thE acm 33

mental one-off machines with their
own unique instruction sets. That did
not stop the creators of EDSAC, the
first useful computer designed from
scratch around the modern “stored
program” paradigm, from building up
a library of reusable machine code sub-
routines, or in 1951 from filling much
of the world’s first textbook on comput-
er programming with code taken from
this library.a However, it did mean the
code would have to be reimplemented
to work elsewhere.

That soon changed. By 1953 sci-
entists and engineers at more than a
dozen different sites were program-
ming identical IBM machines. They
began to exchange code and collabo-
rate to develop packages jointly, a
relationship formalized in 1955 with
the creation of the SHARE user group
and the development of new social
and technical practices around its li-
brary of user-contributed programs.
It appears to have been within SHARE
that computer users began, by 1958,
to refer to “packages.” Its projects to
jointly develop new program suites
addressing high-priority areas were
often given code names incorpo-
rating the words PAC, for example
9PAC for file maintenance and report
generation. (A similar convention
survived for decades in the world of
mathematical software, as evidenced
by the famous LINPACK benchmark
for supercomputer ranking and many
other PACKs for different specialized
areas). Programs within the SHARE
library followed specific social and
technical conventions so they could
be combined as needed by the user
group’s members. These included
wiring control boards in a particular
way, standardizing operational pro-
cedures, adopting common program-
ming tools, and establishing shared
coding conventions. So in this case
the work of packaging meant trans-
porting not just the code itself but
also the tacit human knowledge, ma-
chine configurations, programming
conventions, and operating practices
it relied upon.

The word software gained favor
around 1960, initially as a playful

a Wilkes, M., Wheeler, D., and Gill, S. The Prepa-
ration of Programs for an Electronic Digital Com-
puter. Addison-Wesley, Reading, MA, 1951.

software as Package
Back to software itself. The challenge
facing historians is to find ways to tell
stories about software that illuminate
the fascinating and mysterious nature
of software artifacts without falling
into the opposite trap of narrowing our
focus to look exclusively at the code it-
self. Our preference is generally to re-
construct the ways of seeing the world
that made sense to people in the times
and places we are writing about, rather
than to impose alien perspectives such
as those based on present-day con-
cerns or on something more esoteric
like postmodern literary theory.

Fortunately the history of software
holds just such a concept, hidden in
plain sight. That is the idea of soft-
ware as a package. We still speak of
software packages, yet we rarely stop
to consider the implications of the
idea. It has a long history: people
started talking about programs as
packages a couple of years before
they started calling them software. So
while the idea of packaged software
has recently been associated with the
fading practice of literally putting
programs into shrink-wrapped boxes
it was around for decades before com-
puter programs became retail goods.
In fact the very idea of programs as
software is bound up with the idea of
packaging, and goes back to earliest
occasions on which people started to
think about how programs developed
with one computer center could be
used by another one.

The practice of sharing programs
is as old as the practice of writing pro-
grams (and older than the practice of
executing them—some have claimed
as the first computer programs mate-
rial published in the 1840s to promote
Babbage’s never-finished Analytical
Engine). The very first computers,
built during the 1940s, were experi-

Existing historical
writing on software
has focused on just
a handful of topics.

Call for
Nominations
for ACM
General Election

the ACm nominating
Committee is preparing
to nominate candidates
for the officers of ACm:
President,
Vice-President,
secretary/treasurer;
and two
members at Large.

suggestions for candidates
are solicited. names should be
sent by november 5, 2013
to the nominating Committee Chair,
c/o pat ryan,
Chief operating officer,
ACm, 2 penn plaza, suite 701,
new York, nY 10121-0701, usA.

With each recommendation,
please include background
information and names of individuals
the nominating Committee
can contact for additional
information if necessary.

Alain Chesnais is the Chair
of the nominating Committee,
and the members of the committee
are sheila Anand, susan dumais,
ben Fried, and Fabrizio gagliardi.

34 commUnications of thE acm | september 2013 | vol. 56 | no. 9

viewpoints

Further Reading

Akera, A.
Voluntarism and the fruits of collaboration.
Technology and Culture 42 (2001), 710–736.
Examines the early history of the ShARE
user group mentioned in this column.

Blanchette, J.-F.
A material history of bits. Journal of the
American Society for Information Science
and Technology 62, 6 (2011), 1042–1057.
Begins with an interesting critique of the
idea of information as an immaterial digital
substance, as sometimes favored by
media theorists, then surveys key modular
design techniques used to produce the
computer systems that support digital
representations of information.

Campbell-Kelly, M.
The history of the history of software. IEEE
Annals of the History of Computing 29, 4
(2007), 40–51. Explores the development of
software history over its first few decades,
identifying trends and key works.

Haigh, T.
Software in the 1960s as concept, service,
and product. IEEE Annals of the History of
Computing 24, 5 (2002), 5–13. Examines
the origins of the software concept
and reconstructs the challenges and
opportunities early software packages
provided to data processing users.

Hashagen, U., Keil-Slawik, R.,
and Norberg, A.L., Eds.
Mapping the History of Computing:
Software Issues. Springer-Verlag, new
York (2002). Papers and discussion from
leading scholars chosen to reflect different
approaches to software history. Includes
several insightful papers from museum
specialists on the challenges of collecting
and displaying software.

Lowood, H.E.
The hard work of software history. RBM:
A Journal of Rare Books, Manuscripts,
and Cultural Heritage 2 (2001), 41–161.
Overview of the challenges of software
history, including those posed to curators.

Mahoney, M.S.
What makes the history of software hard.
IEEE Annals of the History of Computing
30, 3 (2008), 8–18. A thoughtful attempt
to position software history within an
approach to what Mahoney called the
“histories of computing(s)” structured
around user communities and practices
rather than hardware.

Williams, R. and Pollock, N.
Software and Organizations: The Biography
of the Enterprise-Wide System or How SAP
Conquered the World. Routledge, London,
2009. Applies perspectives from science
studies to enterprise software packages,
thus making a case for examining their
“biographies” to understand them.

Copyright held by owner/author(s).

complement to hardware, already well
known as a colloquial term for com-
puter equipment.b It was sometimes
used to describe everything else the
computer manufacturer bundled with
the computer hardware—perhaps
including services, documentation,
and other intangibles. In that sense
it has its roots in packaging practice.
Programs became software when they
were packaged, and not everything in
the package was code. For much of the
1960s the most commonly accepted
definition of software therefore in-
cluded only systems programs rather
than applications, which were usu-
ally produced or heavily customized
with the organizations where they
were used. For example, a glossy 1962
pullout inserted into Datamation, a
leading computer industry magazine,
promoted Honeywell’s expertise in
software. This was defined as “the au-
tomatic programming aids that sim-
plify the task of telling the computer
‘hardware’ to do its job.” According to
Honeywell the “three basic categories
of software,” were assembly systems,
compilers, and operating systems.

When computer manufacturers
eventually began to “unbundle” their
software offerings, that is, charge
separately for them, this was part of a
broader trend toward packaging code
as a good in its own right—literally as
a “ware” for sale. Over the 1970s the
mainframe packaged software indus-
try developed from a curiosity to a sig-
nificant market. This growth relied on
a legal framework in which the rights
of producers are protected, on the ac-
ceptance of banks and investors of
software as a viable business, on the
willingness of accountants to value
packages as assets on a software com-
pany’s balance sheet, on the willing-
ness of customers to purchase some-
thing that may contain flaws they are
unable to fix, and on the creation of a
set of shared cultural understandings
such as the difference between a bug
fix (free) and an upgrade (usually paid
for). None of these things were initially
obvious, and each involved a process of

b Shapiro, F.R. Origin of the term software:
Evidence from the JSTOR electronic archive.
IEEE Annals of the History of Computing 22,
2 (2000) located an initial usage in 1958 by
mathematician John W. Tukey to describe
automatic programming aids.

collective learning and negotiation be-
tween producers and suppliers during
which a variety of practices were experi-
mented with to figure out a viable new
way of packaging software.

This is a column rather than a
book, and there is insufficient space
here to explore the many other chap-
ters in the life of the software package
such as the first high-quality manu-
facturer-supported packages (IBM’s
FORTRAN seems to have been a mod-
el), commercial software libraries,
the shrink-wrapped model developed
by the personal computer industry,
online app stores, and subscription
services. The shape and size of the
package varied, and the bundle of
code, documentation, services, sup-
port, and tacit knowledge assembled
to make an enterprise product like
SAP ERP into a salable commodity
are clearly quite different from those
packaged as Angry Birds. Still, air-
mail envelopes and modern inter-
modal shipping containers are both
packaging technologies functioning
on very different scales.

The point remains that the history
of software is much more than just
the history of code. Despite its appar-
ent immateriality, software has always
been tied to a platform and has always
been physically embodied in one form
or another. What turned programs into
software was the work of packaging
needed to transport them effectively
from one group of users to another. To
understand software we cannot just
look at the bits. We need to examine
the whole package.

Thomas haigh (thaigh@computer.org) is an associate
professor of information studies at the university of
wisconsin, milwaukee, and chair of the SIgCIS group for
historians of computing.

the history
of software
is much
more than
just the history
of code.

