
The Media of Programming

This is a preprint. Please cite and quote from the published version: Mark Priestley & Thomas Haigh, “The
Media of Programming,” in Thomas Haigh, ed., Exploring the Early Digital (Springer, 2019):135-158

Mark Priestley

Independent Scholar. m.priestley@gmail.com.

Thomas Haigh

University of Wisconsin—Milwaukee & Siegen University. Thomas.haigh@gmail.com.

Abstract: We revisit the origins of the modern, so-called “stored program” computer during
the 1940s from a media-centric viewpoint, from tape-driven relay computers to the introduction
of delay-line and cathode ray tube memories. Some early machines embodied fixed programs,
but all general-purpose computers use a medium of some kind to store control information.
The idea of a “memory space” composed of sequentially numbered “storage locations” is cru-
cial to modern computing, but we show that this idea developed incrementally and was not
fully articulated in John von Neumann’s First Draft of a Report on the EDVAC. Instead, the
designers of computers based around delay line memories conceptualized their structure using
different temporal and spatial schemes. Referencing the correct data was not just a question of
“where” but also one of “when.”

The phrase “stored program computer” is often used as shorthand for computers patterned
after the design set down by John von Neumann in his 1945 First Draft of a Report on the
EDVAC. We have argued elsewhere (Haigh, Priestley, and Rope 2014) that it is misleading to
compress the cluster of computing technologies developed during the mid-1940s into a single
innovation and to erect a rigid barrier between (comparatively) ancient and modern computing
depending on whether a machine stored coded instructions in an addressable electronic
memory that was both readable and writable.

We consider it particularly unwise to speak of a stored program concept, as the phrase sug-
gests that that the single innovation was an abstract idea. Professional historians have largely
moved on from discussing the early computers of 1940s to focus on more recent developments.
In their absence, authors such as Martin Davis (Davis 2001) and Jack Copeland (Copeland
2013) have claimed to find the source of this supposed concept in logic, reinforcing an abstract
view of the origins of modern computing.1

1 Of course, the “stored program concept” has been discussed at length by many other histo-
rians, including William Aspray, Paul Ceruzzi, and Doron Swade. We engage in detail with

mailto:m.priestley@gmail.com
mailto:Thomas.haigh@gmail.com

2 The Media of Programming – Preprint Version Priestley & Haigh

Perhaps because of this abstract turn, the widely held belief that the essence of the modern
computer is tied up with the question of the storage of programs has not led to a significant
engagement with the characteristics of the digital media doing the storing. Accounts of the kind
offered by Davis and Copeland privilege mathematical and abstract ideas and downplay the
technological development of delay lines, Williams tubes, and other forms of information stor-
age device.2 Conversely, work engaging with the details of early memory technology, even by
some of the same authors (Copeland et al. 2017), has not typically focused on creation and
initial adoption of the EDVAC model for the modern computer or considered the interplay of
memory technologies and architecture. In this chapter we retell the familiar story of the emer-
gence of modern computing in the mid-1940s from the unfamiliar perspective of the digital
media used to encode the programs of instructions that the machines carried out.

Automation and Programming

The mechanical aids to digital computation available in the 1930s, desk calculators and
punched card machines, only automated individual operations. Extended computation still de-
pended on human labor: people ferried card decks around corporate offices, or transcribed
numbers from calculator to paper and back again in the computing rooms of the Mathematical
Tables Project (Grier 2006) and the country homes of the retired mariners working for the UK’s
Nautical Almanac Office (Croarken 2003).

Automation had been carried further in non-digital machines such as the differential ana-
lyzer. In a computation set up on an analyzer, elementary operations were executed continu-
ously and simultaneously on quantities that were not represented digitally, but by some physi-
cal analogue such as the rotation of a shaft. Analyzers contained devices to perform individual
operations, such as integrators and adders, but did not sequence discrete operations over time
as human and automatic digital computers did (Haigh and Priestley 2016).

Between the 1820s and the early 1940s several groups described, and some built, digital
machines that automatically performed sequences of operations. In some the sequence of op-
erations was determined solely by the physical structure of the machine. Babbage’s Difference
Engines fall into this category, as does the Bell Labs Complex Number Calculator of 1940, a
special-purpose machine capable of performing the four fundamental operations of arithmetic
on complex numbers. According to its inventor George Stibitz, it contained units handling the
real and imaginary parts of the calculation which “operated in parallel, during multiplication,
for example, when the real and imaginary parts of the multiplicand were multiplied by digits
of the real part of the multiplier simultaneously” (Stibitz 1967, p. 39). The machine imple-
mented the operations of real-number arithmetic but gave its users no way of re-sequencing
those operations for any other purpose.

their work in {Haigh, 2016 #5964@ch. 11} and {Haigh, 2014 #5717} and will not repeat that
analysis here.

2 Copeland has in fact produced an excellent study of early tube based memory devices
(Copeland et al. 2017), but this engagement with materiality does not appear to have altered
his conviction that Alan Turing invented the “stored program computer” in 1936.

3

Other special-purpose machines of the era, with similarly fixed programs, included the Co-
lossus machines and the Atanasoff-Berry Computer. These machines performed a small num-
ber of operation sequences defined by their physical construction. Using a phrase introduced
by the ENIAC group (Grier 1996) we describe such machines as embodying a single “program
of operations”. As with other contemporary uses of the word “program,” the exact sequence of
operations carried out would vary, in this case according to properties of the input data or user
configuration.

Greater flexibility could be obtained by allowing the sequence of operations to be specified
in advance of the computation starting, a process usually described as giving “instructions” or
“orders” to the machine. In the 1930s, Konrad Zuse (Zuse 1993) and Howard Aiken (Cohen
1999) began projects to construct machines capable of obeying sequences of instructions, and
the general approach was theorized by Alan Turing (1936) and Emil Post (1936). The metaphor
of “giving orders” resonated with the familiar dynamic of supervisors and human computers,
something brought out clearly in Post’s account. The term “automatically sequenced” was in-
troduced to distinguish these machines from their less capable forebears.

Around the middle of 1940s, the term “program” began to be used to refer to these sequences
of instructions rather than operations to which they gave rise (Haigh, Priestley and Rope 2016).
The creation of these sequences is one of the key senses of what we now call “programming,”
In the mid-1940s, however, “program” and its derivatives were used in other senses: a program
could be a sequence of operations or instructions, and programming was a task carried out by
control circuitry before it became “paper work” (Turing 1946) performed by humans. These
ambiguities highlight an important theme of this chapter, namely the relationship between the
static program of instructions given to an automatically sequenced machine and the dynamic
unfolding of those instructions into a computation, or program of operations. This was origi-
nally thought to be a fairly straightforward correspondence, and we trace the interplay of logical
and technological factors that led to a more complex understanding of its nature.

The distinction between machines which embody a single program and those which carry
out programs supplied to them as a set of encoded orders appears to be fundamental. In the
latter case, a novel computation can be carried out by simply supplying a different set of orders
instead of building a new machine. We say “appears to be fundamental,” however, because the
distinction is not really one between different kinds of machine. The program embodied by an
automatically sequenced machine consists of the operations required to read and interpret a
coded sequence of instruction. A modern computer endlessly fetches instructions from
memory, decodes them, and executes the corresponding operations. Likewise, Turing’s ab-
stract machines embody a single program, defined by a table listing their possible configura-
tions and behavior. Turing’s universal machines are not a new type of machine, but regular
Turing machines put to a very specific use.

The instructions defining computations were encoded in a variety of quite distinct media.
Each medium offered different affordances to the designer of the machines’ repertoire of in-
structions and to its programmers and affected the ways in which instruction sequences could
be mapped into temporal sequences of operations during the execution of a program. Proceed-
ing largely chronologically, we describe how the instruction sets and practices of organizing
computations on different machines were shaped by the properties of the media used to store
the program instructions.

4 The Media of Programming – Preprint Version Priestley & Haigh

Storing Instructions on Tapes

Three famous historical actors independently began projects to build machines that would
obey arbitrary instruction sequences: Charles Babbage (Swade 2001), Konrad Zuse (Zuse
1993) and Howard Aiken (Cohen 1999). All three conceived of computation as the execution
of a temporal sequence of basic operations and therefore started by assuming that simple se-
quences of instructions, each causing the machine to execute a single operation, would be ad-
equate to control computations. All three came to recognize that this model was over-simple.

Their machines encoded instructions as patterns of perforations in paper or cardboard con-
figured to make a sequential, machine-readable medium, or tape. For the Analytical Engine,
Babbage drew upon Joseph Marie Jacquard’s use of punched cards to control the operation of
mechanical looms. Instructions were punched on cards which, like Jacquard, Babbage pro-
posed to tie together to make a sequential, machine-readable medium. For the Harvard Mark I,
Aiken specified a custom-designed 24-channel tape out of IBM card stock, each position hold-
ing a single encoded instruction. Other machines, such as the Relay Interpolator built at Bell
Labs in the early 1940s, used standard 5 or 6-hole teleprinter tape.

Addressable memory and the format of instructions

Unlike machines that embody a single program, tape-controlled computers were designed to
carry out different programs at different times. This required a different approach to the storage
of data. Special-purpose machines have special-purpose memory components: the electronic
counters of the Colossus machines, for example, were permanently connected to the machines’
logic circuits and were used solely to tally the number of times particular conditions were sat-
isfied. In contrast, automatically sequenced machines need general purpose storage units that
can be switched to connect with different computational units as demanded by different in-
structions. Mark I stored numbers in “counters,” and a specific counter could at one moment
receive a number from the machine’s multiplier and at the next moment supply it as an argu-
ment for the computation of a sine function. The relationship between the store and the mill
(CPU) of Babbage’s Analytical Engine was similarly flexible.

The arguments for a specific operation could be taken from any storage unit, and the result
of the operation placed in any storage unit. This meant that the storage units had to be identifi-
able in some way. This was done by assigning what would later be called an “address” (usually
a number) to each individual memory unit. Instructions to the machine to perform a specific
operation therefore needed to encode not only a reference to the operation, but also the ad-
dresses of the storage units involved.

Exactly how this encoding was carried out depended on the details of a machine’s architec-
ture. Many of Mark I’s instructions, for example, contained two addresses, one specifying the
counter from which data was to be read and the other specifying the counter into which the
data would be placed. A third field specified the operations that the machine would carry out
in response to reading the instruction.

5

Controlling computations

The first tape machines had only a single tape reader. They appear to have been designed on
the assumption that there would be a straightforward one-to-one correspondence between the
instructions punched on the tape and the operations carried out by the machine, similar to the
relationship between the tape of a player piano and the music it performs.

The iterative nature of many mathematical calculations, where a relatively short sequence of
operations is carried out repeatedly until the results obtained approach some required level of
tolerance, complicated this simple picture. It would obviously be wasteful and error-prone to
punch the same sequence of operations repeatedly onto a tape, and in cases where the number
of iterations was not known in advance this would not even be feasible in principle. The obvi-
ous solution to this problem was to punch the instructions once and provide some way for them
to be repeatedly presented to the machine. To this end, Babbage planned to introduce a “back-
ing” mechanism which would allow the Analytical Engine to rewind its control tape to an ear-
lier instruction. More mundanely, the ends of Mark I’s tapes were glued together to make loops,
called “endless tapes” loops that, when fed through the tape reader, would generate potentially
unending iterative computations.

In practice, of course, mathematical computations come to an end. To stop an iterated in-
struction sequence, Mark I’s designers provided a conditional stop order: when a calculated
quantity was sufficiently close to the required value, the sequence mechanism would be
stopped, and the operator could manually adjust the machine before it carried out the next
sequence of instructions.

This simple feature introduces a significant complication into the relationship between in-
structions and operations performed. In the case of a telegram, the structure of the message
directly corresponds to the structure of the tape. The characters of the message are simply the
(encoded) characters punched on the tape - the same number of them and in the same order.
Likewise, there is a one to one correspondence between the notes played on a player piano and
those punched on its control tape.

With conditional termination, however, the situation is different. Suppose that 100 coded
instructions have been punched on a Mark I control loop. As the computation proceeds, the
instructions will be read repeatedly, and the number of times the tape cycles will vary from
computation to computation, depending on the initial data supplied. By changing the (spatial)
topology of the tape from a linear sequence to a cycle and allowing the machine itself to deter-
mine the number of times the tape is cycled, the length of the (temporal) sequence of operations
performed by Mark I becomes difficult or impossible to predict in advance. What started as an
apparently simple relationship whereby a sequence of instructions was transformed into a se-
quence of operations has become rather more complex, as the machine “unwinds” a “loop” of
instructions into a longer sequence of operations. As Herman Goldstine and John von Neumann
explained a few years later, “the relation of the coded instruction sequence to the mathemati-
cally conceived procedure of (numerical) solution is not a statical one, that of a translation, but
highly dynamical” (Goldstine and von Neumann 1947).

6 The Media of Programming – Preprint Version Priestley & Haigh

Programming with Multiple Instruction Sequences

It soon became evident that most problems required more than just a single instruction tape.
Many of the examples given in the Mark I’s Manual of Operation (Staff of the Harvard
Computation Laboratory 1946) use two tapes: a linear “initial tape” which set up things like
the initial values of parameters, and an endless tape which performed the iterative calculations.
When the first tape finished, it was removed by a human operator and the next tape loaded.

In general, control of a computation also involved making sure that the necessary sequences
were selected and performed in the right order. Various common patterns of execution were
recognized, namely the need to choose between alternative sequences, the need to perform a
single sequence repeatedly, and the need to allow a sequence to be performed at different points
in a computation. As well as the coded instructions on the tapes, programmers wrote orders for
Mark I’s operators. Both were supposed to leave no room for discretion or ambiguity. The
conditional stop order was used to pause the machine for manually executed conditional
branches, as one of the Mark I’s first programmers, Richard Bloch, recalled:

Since orders were not in registers, but only on tape, in order to branch you physically branched by
stopping the machine or causing the machine to stop; whereupon the operator would twirl the drum that
held the tape over to an indicated branch line and proceed from there. You had instructions that would say
"if the machine stops here, move it over to the red line next; if it stops somewhere else, ship it over to the
blue line." (Bloch 1984)

Such procedures further complicated the relationship between instructions and operations,
as did the practice of “interpolating” orders. Mark I included special-purpose units to perform
multiplication and various other operations. To avoid the rest of the machine sitting idly by
while a multiplication was being carried out, say, extra instructions could be punched between
the three coded instructions that controlled the multiplier. The consequence was that a single
sequence of coded instructions on the tape would give rise to parallel sequences of operations
as the machine read and processed the instructions.

Mark I therefore operated with two quite distinct levels of control. Coded orders were read
from tape and executed in the order in which they had been punched while the tapes themselves
were managed by the operators. Sequencing was therefore only partly automated, but in view
of the machine’s speed and intended application, the slowdown caused by the human operators
was expected to be acceptable.

Program Pulses and Program Controls

The first programmable electronic computer, ENIAC, was expected to calculate several or-
ders of magnitude faster than Mark I. Its lead designers John Mauchly and Presper Eckert un-
derstood from the beginning that ENIAC would need to automate both levels of control and be
able to switch between different sequences of operations automatically as well as following an
individual sequence. They also knew that reading instructions from an external medium such
as paper tape would be unacceptably slow, so individual instructions were set up by turning
switches on the many “program controls” distributed around the machine’s units. These in-
structions were then linked into sequences by plugging a fixed connection between each in-
struction and the next in the sequence in a problem-specific “set up.” At run-time, the execution

7

of the sequence of instructions was controlled by “program pulses” that were received by a
program control to trigger an operation, and then passed on in a kind of relay race to the next
control in the sequence.

There were hierarchies of control within ENIAC, however, that complicated this simple pic-
ture. Some units, notably the multiplier and the divider, made coordinated use of several accu-
mulators to carry out the sequences of additions and subtractions necessary to form products
and quotients. The number of additions needed to perform a multiplication varied as the size
of the operands increased (unlike Stibitz’s complex multiplication, which required exactly the
same sequence of real-number operations on every occasion). A progress report described how,
when a multiplication was triggered, “accumulators will be automatically programmed to re-
ceive the multiplier and the multiplicand” (Anonymous 1944, p. IV-10). This was an extension
of a lower-level usage in which the “program circuits” within a unit controlled the operation of
its arithmetic circuits, setting and unsetting of flip-flops and controlling other simple electronic
circuits.

The system of program pulses moving between units offered a way for ENIAC to sequence
operations at electronic speed, without the huge slowdown that would be caused by waiting for
the next instruction to be read from tape. As the team developed it further, it also offered a way
to shift automatically from one sequence to another. They arrived at a definitive model early
in 1944 after Adele Goldstine and Arthur Burks had made detailed plans for a ballistic trajec-
tory calculation.3 The problem was broken down into four sequences – initialization, the oper-
ations to carry out a single integration step, printing results, hardware checking – which needed
to be repeated in a relatively complex pattern involving two nested loops.

Coordinating these sequences was principally the responsibility of a dedicated unit, the
“master programmer.” Combining counters with devices called steppers that allowed control
to branch to one of up to six basic sequences, this unit allowed complex nested sequences of
sequences to be set up, sequences to be repeated a fixed number of times, conditional branching
either to choose between two sequences or to terminate a loop, and control to be transferred to
different places after successive invocations of a “subsidiary” sequence.

To master this complexity, the ENIAC team also developed a graphical notation (Figure 1)
for depicting the sequence programming involved in particular computation. These “master
programmer diagrams” black-boxed the basic instruction sequences and showed how the step-
pers controlled the repetition and time-varying invocation of sequences.

Multiple tapes

The creators of the tape controlled computers soon realized the usefulness of letting their
machines switch automatically between control sequences. An initial step was to add more tape
readers, so that several sequences could be mounted at once, and to provide the machine with
instructions to shift control between them automatically. Harvard’s operating procedures had
already made the operators’ work as mechanical as possible. The Harvard Mark II, designed in

3 In (Haigh et al 2016) we attributed this work to Burks, but subsequent archival research
has revealed the importance of Goldstine’s contribution.

8 The Media of Programming – Preprint Version Priestley & Haigh

1945 after only a few months experience of using Mark I, allowed up to four sequence units to
be used. Similar proposals had been made for the Bell Labs relay computer later known as
“Model V.” In March 1944 Samuel Williams proposed that the description of a problem would
be split between a “routine tape” describing the operations to be performed and a “problem
tape” containing “information necessary for the solving of the particular problem for which the
tape has been prepared” (Williams 1944). In August, following discussions with Williams and
Stibitz, von Neumann (1944) reported to Robert Oppenheimer that the machine would also use
“auxiliary routine tapes […] used for frequently recurring subcycles,” with separate readers for
the different tapes.

In 1947 a “subsidiary sequence unit” was added to the Harvard Mark I. Similar in intent to
the Mark II proposals, this unit allowed 10 sequences of around 50 instructions each to be set
up. The instructions comprising the sub-sequences were not punched on tape but “wired with
plug wires, the codes of each line were wired with a series of plug holes for a particular line”.
The sequencing of these instructions was carried out by stepping switches (Bloch 1984).

Mark II’s four sequence units were divided, with units 1 and 2 being on the machine’s left
side, and units 3 and 4 on the right.4 Having more than one sequence unit enabled the dynamic
transfer of control between two instruction sequences. The Harvard team conceptualized this
as a hierarchical relationship, though the hardware itself could have supported more flexible
relationships:

Should the method of solution involve a repeated sub-routine, it is advantageous to employ the sequence
units in a dominant and subsidiary relationship. One unit—the dominant—initiates the computing routine
and then calls in the other—the subsidiary. The latter executes the repeated portions of the routine as
many times as required and then calls back the dominant to complete the routine. Thus the repeated sub-
routine need be coded but once, permitting short control tapes to be used. (267)

The orders that transferred control between units could be read at any unit. Perhaps for this
reason, instructions did not use the numeric identifiers of the units, but defined them relatively.
Thus, operation code 67 had the meaning “switch to the other unit on the same side,” while
operation codes 71 and 72 switched control to one or other of the units on the opposite side of
the machine. Operation code 70, a conditional branch, transferred control to the other sequence
unit if the value held in a particular register was positive.

The multiple tape readers of the Mark II and the Bell machine played the same role as
ENIAC’s master programmer, allowing the basic sequences of instructions to be automatically
invoked and repeated according to the needs of a specific problem. We have, however, found
no evidence indicating that either approach was directly influenced by the other.

Sequential Electronic Memory

Under pressure to build a highly innovative machine on a war-time contract, the ENIAC
team made two significant design decisions. Reasoning that computation at electronic speed
required similarly fast access to the numbers being operated on, they built ENIAC’s rewritable

4 Mark II could be operated as one large machine or split to allow independent problems to
be computed simultaneously on its two “sides”.

9

store out of the only available electronic technology: vacuum tubes. The costs of this approach
meant that the store held only 200 decimal digits split between 20 accumulators which, like
Mark I’s counters, did not simply store numbers but also implemented addition. Small though
it was, this storage capacity enabled ENIAC to solve the ballistic equations thought likely to
form the bulk of its workload. Secondly, as described above, its idiosyncratic programming
system was designed to get around the fact that reading instructions from paper tape would be
too slow.

In mid-1944 the team began to make plans for a new machine, soon code-named EDVAC.
They specifically wanted to address ENIAC’s small store and awkward set-up process. Von
Neumann helped focus the proposal by identifying non-linear partial differential equations as
a key application, important not only to the Manhattan project but also to BRL’s on-going
research programs. However, the numerical material required for the solution of these equa-
tions could not be economically stored in a vacuum tube memory. The first requirement for the
new project was therefore to identify a fast storage device capable of holding large amounts of
numerical data.

The Invention of Delay Line Memory

Since 1942, Moore School staff, principally Eckert and T. Kite Sharpless, had been working
on an NDRC contract with MIT’s Radiation Laboratory on various aspects of radar systems
(Eckert and Sharpless 1945). They came across the liquid delay line developed by Bell Labs’
William Shockley. Intended as a timing device for use in a range detection system, this prom-
ising idea had practical limitations, such as its weight. By June 1943 the Moore School team
had developed a prototype delay line using mercury instead of the water and ethylene glycol
mix used by Shockley. The Moore School device was demonstrated to Rad Lab staff, but work
on the MIT contract ceased shortly afterwards as because the start of the ENIAC project in
May diverted the efforts of the Moore School staff. Details of the mercury line were handed
over to MIT, who continued to develop it for range detection and the “removal of ground clut-
ter” in radar systems, applications which required the line delay the pulses travelling through
it for a precisely specified period of time.

In the spring of 1944, Eckert returned to the mercury line and constructed a prototype which
could be used as a storage device by adding simple circuitry to read the pulses emerging from
the end of the line, reform them, and reinsert them at the other end of the tank for another
traverse. This process of regeneration and recirculation turned the mercury line from a device
which simply delayed a train of pulses into one which could preserve them indefinitely. Thus
reconfigured, the mercury delay line seemed to hold out the promise of being a relatively cheap
way to store and quickly retrieve large amounts of data.5

5 This paragraph is based on the account given in (Burks n.d.).

10 The Media of Programming – Preprint Version Priestley & Haigh

The unification of memory

In August 1944, Eckert and Mauchly circulated a description of the invention (which they
hoped to patent) to the ENIAC team explaining how delay lines or, more generally, “transmis-
sion line registers” might be used in a computer:

The transmission line register is easily adapted to the storage of large amounts of numerical information
[…] A number of such registers may be employed as components in a computing machine. They may be
used to receive from and read back into devices which do the actual computing. The pulses stored in the
registers need not represent actual numbers, but may represent operations to be performed. (Such
operations, or the code which represents them, may of course be interpreted as “code numbers” for the
operations.) The pulses from a transmission line register may, for instance, be fed into an electronic
stepping switch so as to operate a chosen circuit at a given time. (Eckert and Mauchly 1944, p. 5)

By providing a large, fast, rewritable store, delay lines could store coded instructions, al-
ready used on the Harvard and Bell Labs machines, and supply them to EDVAC at electronic
speed. Delay lines therefore held out the promise of addressing both of ENIAC’s perceived
shortcomings.

Beginning in the autumn of 1944, the EDVAC project progressed on the assumption that the
machine would be built around a delay-line memory. Unlike ENIAC’s accumulators and Mark
I’s counters, these would simply store numbers which would be passed to separate devices to
“do the actual computing.” As Samuel Williams had in his March proposals for the new Bell
Labs machine (Williams 1944), which had been communicated to the Moore School group,
Eckert and Mauchly separated the two functions of storage and computation. The Moore
School went further in suggesting that a single medium could store the different kinds of infor-
mation held by a fast electronic machine. This was a radical departure from machines that read
numbers from electromechanical or electronic counters, program instructions from tapes, and
functions from tapes or resistor matrices.

Von Neumann joined the group as a consultant principally responsible for working on “log-
ical control.” In practice, this meant the question of how the machine’s structure could be rep-
resented to the programmer and how a set of instructions could be designed to allow it to be
efficiently used. His first systematic account of the issues was contained in the First Draft of a
Report on the EDVAC (von Neumann 1945), the manuscript of which he sent to the group
towards the end of April 1945.

Memory in the First Draft

At the beginning of the First Draft, von Neumann enumerated various things EDVAC would
have to “remember”: the instructions governing the course of the computation, intermediate
numerical results, tabular representations of functions, and the numerical parameters of a prob-
lem (von Neumann 1945, pp. 4-6). Generalizing the suggestion made in Eckert and Mauchly’s
description of delay line storage, von Neumann proposed a single functional component to hold
all these disparate kinds of information. He called this the computer’s “memory.” Most of the
First Draft reflects the team’s commitment to delay lines, but von Neumann also briefly dis-
cussed the use of iconoscopes as an alternative memory technology, as we discuss in Section
5.

11

The First Draft is notable for its abstract approach. Putting aside the details of pulses trav-
elling through mercury, von Neumann described the basic “unit” of memory as simply the
ability to “retain the value of one binary digit.” After deciding that numbers could be stored in
32 bits, von Neumann commented that it was “advisable to subdivide the entire memory […]
into groups of 32 units, to be called minor cycles” (von Neumann 1945, p. 58). He called the
contents of minor cycles, whether coded instructions or numbers, “code words”, a phrase soon
shortened simply to “word.”

Memory is useless unless the stored information can be easily located. Existing machines
did this in a variety of ways. The counters and registers of the tape-controlled machines had
index numbers which appeared in instructions and controlled switches temporarily connecting
the specified storage device to other units of the machine. Instructions, however, were se-
quenced by the physical properties of the medium storing them, being punched in consecutive
tape positions or, as on ENIAC, physically linked by cabling. Tabulated function values were
often retrieved by a linear search: Mark I’s function tapes stored alternating arguments and
function values and to look up a tabulated value a dedicated unit “hunted” for a supplied argu-
ment and then read the following value.6 In contrast, ENIAC used two-digit function arguments
to index its portable function tables. Finally, several machines provided read-only storage de-
vices to hold numerical parameters. Typically, like Mark I’s registers and the rows on ENIAC’s
constant transmitter, these were indexed and accessed in a similar way to the rewritable devices
holding intermediate results.

Von Neumann defined a unified indexing system for EDVAC’s delay line memory but at
the same time recognizing the benefits of sequential access. The 32 bits making up a number
were not individually indexed, and their meaning was determined by the fact that they were
stored in a contiguous sequence. He further noted that “it is usually convenient that the minor
cycles expressing the successive steps in a sequence of logical instructions should follow each
other automatically” (von Neumann 1945, p. 76).

EDVAC’s memory, as described in the First Draft, consisted of a battery of delay lines, each
holding 32 minor cycles indexed by ordered pairs (x, y) where x identified a delay line and y a
minor cycle within a line.7 The two components of the index signify in very different ways,
however. A value of x denotes a physical delay line which could be selected by means of
switching in the familiar way. As the bits in the delay line recirculated, however, the minor
cycle y would only be available for reading at one specific time within the line’s overall cycle.
The values of y therefore denote not fixed regions of space from which data could be copied,
but periods of time during which it was available. As von Neumann put it,

the DLA organs [delay line with amplifier] are definite physical objects, hence their enumeration offers no difficulties. The
minor cycles in a given DLA organ, on the other hand, are merely moving loci, at which certain combinations of 32 possible
stimuli may be located. Alternatively, looking at the situation at the output end of the DLA organ, a minor cycle is a
sequence of 32 periods τ, this sequence being considered to be periodically returning after every 1,024 periods τ. One might
say that a minor cycle is a 32τ “hour” of a 1,024τ “day”, the “day” thus having 32 “hours”. (von Neumann 1945, p. 89)

6 The tapes of Turing’s abstract machines of 1936 were accessed in a similar way: temporary
marks were left in squares adjacent to the squares holding data of interest and later “hunted”
for.

7 These ordered pairs were written, problematically from a typist’s point of view, 𝜇𝜇𝜇𝜇 in the
First Draft.

12 The Media of Programming – Preprint Version Priestley & Haigh

In his proposals for the ACE, Turing (1946) followed von Neumann’s proposals for a delay-
line memory and simply described the two components of x and y the index as the “delay line”
and the “time” at which the desired minor cycle would be available. Von Neumann, however,
struggled to find an intuitive way of describing the situation. He initially used purely spatial
language: writing to Herman Goldstine in February, he described the “integers x, y which de-
note positions in the memory” rather vividly as “house numbers”, before crossing the phrase
out and replacing it by “filing numbers” (von Neumann 1945b). It seems very odd now to think
of numbers living on a street, but that’s the idea that has been naturalized in the phrases like
“memory address” (just as it today seems strange to think of a computer as a brain, but natural
to think of it having a memory).

By April, however, when the First Draft was written, von Neumann had moved away from
spatial descriptions of minor cycles, a poor fit with the delay lines’ dynamic properties, to the
use of the temporal metaphors of “hours” and “days.” Numbers were not stored in fixed and
very concrete physical device, like Mark I’s counters, but in “moving loci,” abstract regions of
space containing waveforms in a largely static medium. A locus may even consist of two non-
contiguous regions, for example when a word is being transferred bit-by-bit from one end of a
tank to the other. Just as midnight is used as the starting point to number the hours in a day, the
minor cycles were numbered from an arbitrarily chosen point in the delay lines’ timing cycle.

English offers more ways of describing spatial divisions than temporal ones. An alternative
temporal metaphor was offered by Haskell Curry (1945), an early reader of the First Draft who
noted that there was “no generally accepted term for the fundamental unit of time.” He sug-
gested using “beat” – “the accepted term for the fundamental time unit in music” – for the time
taken for one pulse to emerge from a delay line, and considered carrying the metaphor further
by referring to minor cycles as “measures” or “bars” before concluding that von Neumann’s
terminology of minor cycles was “just as good.”

In an unpublished manuscript written shortly after the First Draft, von Neumann gave a
more precise mathematical characterization of how temporal indexes would work (see Priestley
2018). A clock would keep a count as bits emerged from the delay lines, and from this the
index of the word currently emerging from a line could easily be computed. Turing’s ACE
report described a similar scheme in somewhat more detail (Turing 1946).

Coding in the First Draft

In the First Draft, von Neumann described a new approach to automatic control which we
call the “modern code paradigm.” We have previously (Haigh, Priestley, and Rope 2014) sum-
marized its key aspects as the following:

1. The program is executed completely automatically.
2. The program is written as a single sequence of instructions, known as “orders” in the First

Draft, which are stored in numbered memory locations along with data.
3. Each instruction within the program specifies one of a set of atomic operations made avail-

able to the programmer.
4. The program’s instructions are usually executed in a predetermined sequence.
5. However, a program can instruct the computer to depart from this ordinary sequence and

jump to a different point in the program.

13

6. The address on which an instruction acts can change during the course of the program’s
execution.

This combined the fully automatic control of ENIAC (points 1 and 5) with the ordered se-
quence of coded instructions found on the tape-controlled machines (points 2-4). Exploiting
the fact that instructions stored in EDVAC’s unified memory were themselves indexed, switch-
ing to a different instruction sequence required nothing more than (in the language of the First
Draft) “connecting” the central control organ to a different minor cycle by executing a transfer
instruction specifying the address from which the next instruction should be read. This was
simpler and more efficient than adding additional tape readers to hold routine tapes or wiring
up a network of program controls to represent different execution pathways as on ENIAC.

One of von Neumann’s motivations for insisting that memory had a default sequential or-
dering was to allow the machine’s control to read an instruction sequence in a simple way
(point 4). Tape-controlled computers moved naturally from one instruction to the next as the
tape was moved physically through its reader. On EDVAC, instructions to be executed succes-
sively would be stored in consecutive minor cycles and the address of the next instruction
would only have to be explicitly specified in the special case of a transfer order (point 5). As
von Neumann (1945, p. 86) put it, "as a normal routine CC should obey the orders in the tem-
poral sequence, in which they naturally appear at the output of the DLA organ to which CC is
connected.” This wording suggests that operations would be carried out at the same rate as
instructions appeared, and hence that a computation could progress by simply taking the in-
struction emerging from a delay line once the preceding operation was completed.

However, there is a significant difference between tape readers and delay lines. Mark I’s
instruction tape reader only advanced when the machine’s control recognized that the preced-
ing operation was complete but EDVAC’s instructions would emerge from the delay lines at a
fixed rate. Von Neumann’s preference for sequential storage of instructions may have been a
reflection of the natural properties of instructions punched on paper tape, but its implementa-
tion could not rely solely on the physical properties of the delay lines. Even if an operation
could be carried out as the next instruction was being read (which would have required buffer-
ing not explicitly described in the First Draft) this would mean that all operations had to be
carried out in the time of one minor cycle. Von Neumann knew very well that this was not the
case, estimating for example that multiplication would take around 30 minor cycles. There
were only a few places in the code where the delay lines’ temporal properties coincided with
the operation being performed, for example in an instruction to copy a number from the arith-
metic unit to the minor cycle immediately following the instruction.

Orders should not be obeyed in “the temporal sequence in which they naturally appear” at
the output of a delay line after the completion of the previous instruction, then, but rather in a
logical sequence defined by their addresses. Most machines patterned after EDVAC include a
program counter, a dedicated memory location holding the address of the instruction currently
being executed. This is incremented automatically, but can be manipulated to produce a jump.
In the First Draft, von Neumann had not yet thought this through. He specified that the bus
joining the “memory organ” to the “central arithmetic organ” should be “connected” to a spe-
cific location by modifying a number stored in the “central control organ” (in later computers
this would be called the address register). Whenever an instruction transferred data from
memory to the arithmetic organ the address register would be overwritten, with the result that
EDVAC would lose its place in the program. Realizing the need to avoid this, von Neumann
specified that during such “transient transfers” the address should be “remembered” (he did not
say where) and restored before the next instruction was read. Like a dedicated program counter,

14 The Media of Programming – Preprint Version Priestley & Haigh

that scheme would consume one extra storage location. Unlike a dedicated program counter,
the scheme would waste time shuffling numbers in and out of the address register. In contrast,
Turing’s ACE report goes into considerable detail about how a short delay line CD (for “current
data”) would accomplish this task (Turing 1946).

Unfortunately, executing orders in the default sequence defined by their addresses causes
substantial inefficiency. In most cases, the minor cycle holding the next instruction will not be
the next to appear at the end of the delay line, and EDVAC’s control would have to wait for
the instruction to arrive. The delay would depend on the time taken to execute the preceding
operation. Von Neumann was aware of this to some extent: the length of the delay lines (32
minor cycles) was chosen to minimize the delay in finding waiting for instructions that follow-
ing multiplications. Perhaps this reflected the well-known observation that multiplication time
dominated most computations, but in fact the delay incurred by operations which took only a
handful of minor cycles to complete would be significantly longer than the statistically ex-
pected delay of half the cycle time of the delay line.

Short Delay Lines

One approach to reduce the inefficiency inherent in naïve use of delay lines was to make
critical data immediately available by moving it into a separate “fast” store. In principle, this
could use any suitable medium but the second iteration of the EDVAC design proposed the use
of short delay lines. Storing only one minor cycle, these would be economical to construct and
their timing properties would fit well with the rest of the machine. As Eckert and Mauchly
(1945) described in a progress report in September 1945, EDVAC’s memory would now con-
tain a mixture of the original long lines and the new short lines. Similarly, the memory de-
scribed by Turing (1946) for the ACE consisted of a mixture of long and short lines.

This development made the code more complex. In the summer of 1945, before coding an
example merge routine, von Neumann developed a new instruction set containing a range of
instructions for moving data between long and short lines (Priestley 2018). New instructions
allowed sequences of words, rather than individual words, to be moved in one operation. The
short lines were used for a variety of purposes: to hold the variables manipulated by the code,
as a place to construct new instructions for immediate execution, and as temporary storage to
hold data being moved from one location in the long lines to another.

The experience of detailed planning for the use of a delay-line machine therefore led to sub-
stantial modification in both machine design and programming technique and substantially
complicated the intentionally simple and abstract design proposed in the First Draft.

Optimum Coding and the Pilot Ace

An alternative, and complementary, way to reduce the inefficiencies arising from storing
instructions in delay lines was to take into account the expected time taken by each operation
and organize the code so that the instructions and numbers did in fact appear at the end of delay
lines exactly when required. Von Neumann attempted this in a limited way in his merge routine

15

by intercalating blank instructions into his code at various points, but seems to have misunder-
stood the temporal properties of the delay lines (Knuth 1970).

The general approach became known as “optimum coding” and was embraced more funda-
mentally in the ACE project. In his original report, Turing (1946) proposed that consecutive
program instructions be stored in alternate minor cycles. On the assumption that many of the
machine’s operations, such as addition or the transfer of a number, could be completed within
one minor cycle, this would significantly reduce the waiting time.

The designers of the Pilot ACE, a simplified pilot version constructed a few years later, went
further. Its minimalist architecture was optimized for speed, producing a small machine that
could outpace much more expensive computers built on the model of EDVAC. To eliminate
instruction decoding hardware and boost performance it eschewed conventional operation
codes, instead treating all instructions as specifying a transfer between a “source” and a “des-
tination.” Sources and destinations could represent delay lines for storage, circuits that per-
formed arithmetic or logical operations, or even pervasively useful constants such as 0 and 1
(Campbell-Kelly 1981). This mechanism did not allow individual minor cycles within delay
lines to be specified: transferring a number from one line to another would simply copy it
between the minor cycles appearing at the end of the lines when the instruction was executed.
This eliminated any waiting time, but placed a large burden on programmers who had to con-
sider the execution time of operations explicitly and to track exactly what would be emerging
from each delay line at each moment during the execution of a program.

This went for instructions as well: the time at which an instruction arrived at the end of a
delay line had to be coordinated with the arrival of the data it was manipulating. Instructions
were not executed in a default sequence but were carefully scattered throughout in memory,
the aim being to “eliminate all the waiting time associated with fetching instructions” (Camp-
bell-Kelly 1981, p. 140). Each instruction nominated its successor by specifying a spatial index
to identify a delay line and a temporal index to pick out a specific minor cycle. The temporality
of the delay line was treated very differently from the First Draft, however, which had imposed
what we would now call addressability on the delay lines, effectively tagging each piece of
data with a location number that accompanied it as it moved through the delay line. This let
programmers completely ignoring the actual temporality of the delay lines by writing code as
if the memory consisted of fixed locations. In contrast, the Pilot Ace specified the position of
the next instructions as a “wait” of so many minor cycles from the current position. If, as von
Neumann had suggested, temporality could be understood via clock-based metaphors, an
EDVAC programmer executing a jump would say “carry out the instruction that emerges from
line 7 at 3 o’clock” while a Pilot ACE programmer would say, in each instruction, something
like “carry out the instruction that emerges from line 7 in 10 minutes time.” While the First
Draft fixed time indexes to an agreed starting point, the Pilot Ace expressed everything relative
to the current time.

The Pilot Ace approach was used for one the most successful early British commercial ma-
chines, the English Electric Deuce. However, most delay line machines, such as the EDSAC
and the commercial Univac I, followed the EDVAC model and accepted complexity and sub-
optimal memory performance as the price to pay for ease of programming. Programmers could
place data for optimum retrieval, if they chose, but instructions were fetched from sequential
locations and so could not be optimally positioned. Some computers, including EDVAC as
built, retained the addressable memory of the First Draft but added an additional address field

16 The Media of Programming – Preprint Version Priestley & Haigh

to each location specify the next instruction to be executed. This permitted, but did not man-
date, the use of optimum coding for instruction placement.8

Random-access Memory

The other potential memory technology mentioned in the First Draft was the iconoscope.
Developed in the 1920s by RCA as a component for television cameras, iconoscopes were
modelled on the retina. A light-sensitive electrostatic screen was imagined as a matrix of tiny
capacitors each holding a charge proportional to the intensity of the light falling on the screen
at that point. The matrix was scanned line-by-line with an electron beam which converted the
charge at each point into a sequence of pulses. that could be transmitted to a remote location
where an image would be reconstructed. Von Neumann imagined that a usable memory device
could be constructed by placing charges on the screen with a second electron beam rather than
by light.9

He noted that “in its developed form” an iconoscope could remember the state of 200,000
separate points, giving a single tube a similar storage capacity as EDVAC’s array of 256 delay
lines. The iconoscopes used in television scanned the screen in a fixed linear order, line by line,
and therefore accessed memory units in a default temporal sequence which could be exploited,
as with the delay lines, to store the bits in a minor cycle next to each other and instructions
sequences in consecutive minor cycles. However, the electron beam reading the charges could
also be rapidly switched to any point on the screen, meaning that arbitrary transfers could be
carried out without the delay caused by waiting for the desired minor cycle to emerge from a
delay line. Iconoscopes seemed to be an ideal memory technology, providing “a basic temporal
sequence of memory units” but also the ability to “break away from this sequence in excep-
tional cases” without penalty (von Neumann 1945, p. 77).

Memory devices based on iconoscopes never became a reality. When the IAS computer
project began, in November 1945, it was assumed that the memory would use delay lines, as
in the latest version of the EDVAC proposals (IAS 1945). At the beginning of 1946, however,
RCA (who was one of the project partners) proposed a novel type of storage tube, the Selectron
(Rajchman 1946). These tubes would have the crucial property of being able to switch to read
any point without delay, and design progressed on the assumption that it would be feasible to
develop tubes with a capacity of 4,096 bits within the timeframe of the project (Burks et al.
1946, p. 9).

8 It became common for machines using delay lines or magnetic drums as their primary
memory to include an additional address to code the location of the next instruction, thus al-
lowing optimum coding. However that was not the only motivation. EDVAC’s designer (Lub-
kin 1947) justified the additional address by saying it would make programs easier to change,
not as a way to improve operational efficiency.

9 See the detailed discussion in (von Neumann 1945 73-8). It is a curiosity that at this point
von Neumann seems to be envisaging a “memory organ” based on the structure of the verte-
brate eye.

17

The modest capacity of the proposed Selectrons meant that to have a sufficiently large
memory the IAS machine would require an array of tubes. However, the team chose to organize
this memory in a novel way. The bits in a minor cycle would no longer be stored contiguously
and read in accordance with the default behaviour of the storage device. Rather, each bit would
be stored in a different Selectron. Reading a word would involve reading one bit from each
Selectron, the bits being located at corresponding positions in the tubes. The bits in a word
would no longer be read serially but in parallel. The team believed this would be faster and
require simpler switching circuits.

While it seemed very promising, the Selectron tube turned out to be very hard to produce
and the final version held only 256 bits. This was used in only one computer, the RAND cor-
poration’s version of the IAS machine known as the JOHNNIAC (Ware 2008). The IAS ma-
chine itself was eventually constructed using an alternative technology developed at the Uni-
versity of Manchester, and known as the “Williams tube” after its inventor. Rather than trying
to develop a completely new type of tube, Williams drew on his wartime experience of radar
and built a functionally similar device based on standard cathode ray tubes.

In June 1946 von Neumann and his collaborators produced what they termed a Preliminary
Discussion of the design of the IAS machine and its code (Burks et al. 1946). In fact, the code
changed only in details thereafter and for many computer builders this document, rather than
the First Draft, was the seminal reference on computer design. Rather than the two-dimensional
spatial and temporal indexes used to identify minor cycles in the First Draft, the IAS machine’s
memory was conceptualized as a simple sequence of words indexed by a single integer. The
instruction set was much simpler that the one von Neumann had proposed for the mid-1945
version of the EDVAC including short delay lines, and its basic capabilities were stripped back
almost to the level of the First Draft code. The major difference arose from the different or-
ganization of the arithmetic unit and the provision of a reasonably extensive range of arithmetic
orders, presumably intended to ease coding of the machine’s core applications.

The Preliminary Discussion, then, conceptualized memory in purely spatial terms. This was
a considerable departure from the First Draft with its mixture of spatial and abstract temporal
coordinates. With von Neumann’s embrace of tube storage and the assumption that any word
could be accessed with equal efficiency, the temporal aspect of memory so prominent in delay
line storage dropped out of consideration altogether and memory was imagined to be a consec-
utive array of words accessed by a single index, or address, which it was natural to imagine in
spatial terms. There was no need for programmers to manage the complexities of distributing
data between long and fast delay lines or to grapple with optimum coding. Later readers, our-
selves initially included, have therefore tended to read the First Draft as if its system of coor-
dinates represent an “address space” or specify “memory locations” – both spatial models. The
abstraction of its coordinates makes that reinterpretation easier, but in reality, spatial metaphors
of this kind were not generally applied to delay line memories. Well into the 1950s, materials
describing commercial delay line machines, such as the Univac I, continued to talk of memory
as being structured into “major cycles” rather than “locations.”

The spatial model of memory remained a considerable abstraction of the physical reality of
storage in the IAS machine. The bits in a word were not stored contiguously, but were distrib-
uted across all the storage tubes. The “address” of a word did not denote a box-like region of
space, but rather a fragmented and distributed locus of small regions on an array of physical
devices. Von Neumann had reintroduced the “house number” metaphor of memory indexes in
the early stages of the IAS project, when it was still assumed that the machine would use delay
lines (IAS 1945), but dropped it thereafter. The same metaphor was revived, or independently

18 The Media of Programming – Preprint Version Priestley & Haigh

rediscovered, by Max Newman of Manchester University. In 1948 he spoke to the Royal So-
ciety about “storing numbers […] in certain places or ‘houses’ in the machine.” However,
Newman focussed on access to the stored data as much as its physical properties and spoke of
needing an “‘automatic telephone exchange’ for ‘selecting ‘houses,’ connecting them to the
arithmetic organ, and writing the answers in other prescribed houses” (Newman 1948).

The Preliminary Discussion presented a simple spatial abstraction of memory as a sequence
of box-like containers of data. Like all good abstractions, this model could be implemented in
many different ways and served to insulate the business of programming from inevitable
changes in the development of memory technology. The model could be applied as well to
serial delay-line machines such as EDSAC as to the parallel computers modelled on the IAS
machine, and remained essentially unchanged when both technologies were replaced by mag-
netic core storage in the 1950s. It was even retro-fitted to EDVAC itself. By 1947 its evolving
design used a single index for minor cycles that completely hid the temporal properties of its
delay lines. As Samuel Lubkin put it, “the number […] representing the location of a word,
will be referred to as an `address’ or `register number’” and addresses hid the “precise arrange-
ment of the memory” allowing programmers to think that numbers are “actually stored in in-
dividual registers” (Lubkin 1947, 10-11). From this point on, programming technique could
develop autonomously and relatively unaffected by changes in hardware, a point made by Mau-
rice Wilkes and his collaborators who observed that techniques developed for EDSAC could
“readily be translated into other order codes” (Wilkes et al 1951). Some delay-line machines
continued to rely on optimum programming techniques, as did certain later machines with mag-
netic drum memories, but as memory technology evolved, these rapidly became obsolete.

Conclusions

We have examined the evolution of the media used to store programs in the period in the
1940s when the collection of ideas constitutive of the modern computer was coming together,
and considered the effect of these media choices on coding and code design. This reveals a
dialectical and emergent relationship between the development of storage technology and more
abstract ideas about coding. Although described by both von Neumann and Turing as a new
kind of logic, the development of computer programming did not follow the path of implemen-
tation of a well-formed theoretical idea but was always responsive to developments in memory
technology.

We mentioned the “stored program concept” at the beginning of this chapter, and the media-
inflected origins of the term are worth re-emphasizing here. The term “stored program” in this
context can be traced to a prototype electronic computer assembled in 1949 by an IBM team
led by Nathanial Rochester.10 The Test Assembly, as the machine was usually known, was a

10 See (Haigh et al 2014). We have subsequently discovered the following occurrence of
“stored program” in a 1946 draft of Goldstine and von Neumann’s Planning and Coding re-
ports: “acoustic or electrostatic storage devices will […] provide […] the possibility to modify
(erase and rewrite) stored program information under the machine’s own control”. This usage
is adjectival rather than substantive, however, and does not appear in the published reports. It

19

mash-up of existing components, including the IBM 604 Electronic Calculating Punch. It could
read program instructions from two different media: 60 instructions could be set up on the
604’s plugboard, but there was also a magnetic drum which could hold 250 numbers or coded
instructions. To distinguish between the two sources of instructions, the team began to refer to
instructions held on the drum as the “stored program” (Rochester 1949). IBM disseminated the
phrase in its marketing (IBM 1955) for the IBM 650 computer which likewise partitioned con-
trol information between a magnetic drum (holding the “650 stored program”) and traditional
punched card controls. Over the following decade the phrase gradually became established as
a way of referring to the class of machines originally described more clumsily as “EDVAC-
type machines.” In its original use, however, it was not intended to mark any deep theoretical
insight, but simply to distinguish between two media on a largely unknown experimental ma-
chine.

The turning point in the story we have told occurs in early stages of the EDVAC project,
when the rather disparate collection of media used to store numbers and instructions on earlier
machines was replaced by the conception of a single, internal memory storing different types
of information. We have traced in some detail the tension in and around the First Draft between
the abstract model of memory, what would later be called an “address space,” and the temporal
properties of delay line memory.

This highlights a tension between spatial and temporal modes of thinking that recurs in the
relationship between program instructions and the operations that are executed. Initially con-
ceived as a fairly simple relationship between corresponding sequences of instructions and op-
erations, by 1947 the coded instructions placed in memory were seen as merely the starting
point of a complex process that could generate an extremely long and complex sequence of
operations, in the process also altering the coded instructions themselves.

By the mid-1950s, computer designers had settled on core memory as a new medium to
replace both delay lines and display tubes. Like display tube storage this had a straight forward
spatial organization of data, rather than the fundamentally temporal structure of the delay line.
This eliminated the need for optimum coding as practiced with drum and delay line machines.
In a broader sense, optimizations based on knowledge of the actual hardware underlying a
simple instruction set and memory model never went away, as programmers and compiler cre-
ators struggled to optimize the performance over time of vector instructions, pipelines, and
cache mechanisms.

References

Anonymous. 1944. ENIAC progress report dated June 30, 1944 In MSOD-UP, b1.

Bloch, Robert. 1984. Oral History Interview with William Aspray, Februrary 22 (CBI OH 66).
Charles Babbage Institute, Minneapolis, MN.

Burks, Arthur W. n.d. Unfinished Book Manuscript: n.p.

is therefore unlikely to have inspired the use of the phrase within IBM in 1949, and we do not
believe that this materially affects our earlier discussion of the topic.

20 The Media of Programming – Preprint Version Priestley & Haigh

Burks, Arthur W, Herman Heine Goldstine, and John von Neumann. 1946. Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument. Princeton, NJ: Institute for Advanced
Studies, 28 June 1946.

Campbell-Kelly, Martin. 1981. "Programming the Pilot Ace: Early Programming Activity at the
National Physical Laboratory." Annals of the History of Computing no. 3 (2):133-162.

Chun, Wendy Hui Kyong. 2011. Programmed Visions: Software and Memory. Cambridge, MA: MIT
Press.

Cohen, I Bernard. 1999. Howard Aiken: Portrait of a Computer Pioneer. Cambridge, MA: MIT Press.

Cope, W. F. and Hartree D. R. The Laminar Boundary Layer in Compresible Flow. Philosophical
Transactions of the Royal Society of London. Series A. 241(827), 1-69. (June 1948).

Copeland, B Jack. 2013. Turing: Pioneer of the Information Age. New York, NY: Oxford University
Press.

Copeland, B. Jack, Andre A. Haeff, Peter Gough, and Cameron Wright. 2017. "Screen History: The
Haeff Memory and Graphics Tube." IEEE Annals of the History of Computing no. 39 (1):9-28.

Croarken, Mary. 2003. "Tabulating the Heavens: Computing the Nautical Alamanac in 18th-Century
England." IEEE Annals of the History of Computing no. 25 (3):48-61.

Curry, Haskell. 1945. Letter to John von Neumann, August 10, 1945 (JvN-LoC b3f2).

Davis, Martin. 2001. Engines of Logic: Mathematicians and the Origin of the Computer. New York,
NY: Norton.

Eckert, J. P., Jr, and J. W. Mauchly, 1944. "Use of acoustical, electrical, or other transmission line in a
device for the registering of pulses, the counting, switching, sorting and scaling of pulses, and the
use of such devices for performing arithmetic operations with pulses". August 1944, HHG-APS
box 21.

Eckert, J. Presper, and John W. Mauchly. 1945. Automatic High Speed Computing: A Progress
Report in the EDVAC. Report of Work Under Contract No. W_570_ORD_1926, Supplement No
4. (Plantiff Exhibit 3540). September 30. In ENIAC Patent Trial Collection, UPD 8.10, University
of Pennsylvania Archives and Records Center, Philadelphia, PA.

Eckert, J. P., and T. K. Sharpless. 1945. Final Report under Contract OEMsr 387. Moore School of
Electrical Engineering, University of Philadelphia, November 14, 1945. (Britton Chance papers,
APS, box 80, folder 7.)

Goldstine, Herman H, and John von Neumann. 1947. Planning and Coding Problems for an
Electronic Computing Instrument. Part II, Volume 1. Princeton, NJ: Institute for Advanced Studies.

Grier, David Alan. 1996. "The ENIAC, the Verb "to program" and the Emergence of Digital
Computers." IEEE Annals of the History of Computing no. 18 (1):51-55.

Grier, David Alan. 2006. When Computers Were Human. Princeton, NJ: Princeton University Press.

Haigh, Thomas, and Mark Priestley. 2016. "Where Code Comes From: Architectures of Automatic
Control from Babbage to Algol." Communications of the ACM no. 59 (1):39-44.

Haigh, Thomas, Mark Priestley, and Crispin Rope. 2014. "Reconsidering the Stored Program
Concept." IEEE Annals of the History of Computing no. 36 (1):4-17.

21

Haigh, Thomas, Mark Priestley, and Crispin Rope. 2016. ENIAC In Action: Making and Remaking the
Modern Computer. Cambridge, MA: MIT Press.

IBM. IBM 650 Technical Fact Sheet, July 20. IBM Archives 1955.

IAS. 1945. Minutes of E.C. Meeting, November 19. Institute of Advanced Studies. In Herman H.
Goldstine Papers (box 27): American Philosophical Society, Philadelphia, PA.

Knuth, Donald E. 1970. "Von Neumann's First Computer Program." ACM Computing Surveys no. 2
(4):247-260.

Lubkin, Samuel. 1947. Proposed Programming for the EDVAC. Moore School of Electrical
Engineering, University of Philadelphia, January 1947 (MSOD box 8).

Newman, M H A. 1948. "General Principles of the Design of All-Purpose Computing Machines."
Proceedings of the Royal Society of London, Series A no. 195:271-274.

Priestley, Mark. 2018 (forthcoming). Routines of substitution: John von Neumann's work on software
development, 1945 -1948. (Springer, 2018).

Rajchman, Jan. 1946 The Selectron. In Cambell-Kelly, M., and Williams, M. R. The Moore School
Lectures. MIT Press, 1985.

Rochester, Nathaniel. 1949. A Calculator Using Electrostatic Storage and a Stored Program. IBM
Archives.

Staff of the Harvard Computation Laboratory. 1946. A Manual of Operation for the Automatic
Sequence Controlled Calculator. Cambridge, MA: Harvard University Press.

Stibitz, George R. 1967. "The Relay Computers at Bell Labs." Datamation no. 13:??

Swade, Doron. 2001. The Difference Engine: Charles Babbage and the Quest to Build the First
Computer. New York: Viking Penguin.

Turing, Alan 1946. Proposed Electronic Calculator. NPL. Reprinted in Carpenter, B. E. and Doran, R.
W (1986), A. M. Turing's ACE Report of 1946 and Other Papers (MIT Press).

von Neumann, John. Letter to Robert Oppenheimer, 1 August 1944 (Los Alamos National Labora-
tory, LA-UR-12-24686).

Von Neumann, John. 1945b. Letter to Herman Goldstine, February 12, 1945 (HHG-APS box 9).

von Neumann, John, 1945. First Draft of a Report on the EDVAC. Moore School of Electrical
Engineering, University of Pennsylvania, June 30, 1945.

Ware, Willis H. 2008. RAND and the Information Evolution: A History in Essays and Vignettes. Santa
Monica, CA: RAND Corporation.

Wilkes, M., Wheeler, D. J., Gill, S.. 1951. The Preparation of Programs for an Electronic Digital
Computer. Addison-Wesley.

Williams, S. B. 1944. "Calculating System". Bell Telephone Laboratories, March 29, 1944 (HHG-
APS box 20).

Zuse, Konrad. 1993. The Computer--My Life. Berling/Heidelberg: Springer-Verlag.

22 The Media of Programming – Preprint Version Priestley & Haigh

Fig 1. Douglas Hartree included this master programmer diagram in a published paper describing a computation performed on
ENIAC (Cope and Hartree 1948). It describes both the configuration of the master programmer and the overall structure of the com-
putation. (source: W. F. Cope and Douglas R. Hartree, “The Laminar Boundary Layer in Compressible Flow,” Philosophical Trans-
actions of the Royal Society of London. Series A; Mathematical and Physical Sciences 241, no. 827 (1948): 1–69; reproduced with
permission of Royal Society)

