
‘Stored Program Concept' Considered Harmful:
History and Historiography*

Preprint version. Final version published in The Nature of Computation. Logic,
Algorithms, Applications, ed. Paola Bonizzoni, Vasco Brattka, Benedikt Löwe,
Springer 2013 (LNCS 7921). http://link.springer.com/book/10.1007/978-3-642-
39053-1.

Thomas Haigh

University of Wisconsin—Milwaukee, Milwaukee, United States

thaigh@computer.org

Abstract. Historians agree that the stored program concept was formulated in
1945 and that its adoption was the most important single step in the develop-
ment of modern computing. But the “concept” has never been properly defined,
and its complex history has left it overloaded with different meanings. The pa-
per surveys its use and development and attempts to separate it into three dis-
tinct aspects, each with its own history and each amenable to more precise defi-
nition.

Keywords: ENIAC, von Neumann Architecture, Turing Machine, History of
Computing.

1 Introduction

It is a truth universally agreed that implementation of the “stored program concept” in
the late-1940s was the most important dividing line in computer history, separating
modern computers from their less evolved predecessors. Historians also agree that the
concept was first stated in the “First Draft of a Report on the EDVAC,” (hereafter
“First Draft”) circulated under the name of John von Neumann in 1945 [1]. While the
true balance of credit for the ideas contained in this document is widely and heatedly
debated, its fundamental influence on the development of modern computing is not.

Yet when historian Doron Swade delivered an address [2] to celebrate the sixtieth
anniversary of the 1949 EDSAC computer, generally considered the first useful stored

* This paper draws extensively on ideas and analysis developed during my on-

going collaboration with Mark Priestley and Crispin Rope on a project exploring the
ENIAC’s 1948 conversion to a new programming method and its use for the first
computerized Monte Carlo calculations. In particular the definitions given of the
“modern programming paradigm” were formulated during discussion with Priestley.

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://link.springer.com/book/10.1007/978-3-642-39053-1
http://link.springer.com/book/10.1007/978-3-642-39053-1

program machine, he began with the startling observation we do not really agree on
why the concept is so important. For years Swade had “assumed that the significance
of the stored program must be self-evident” and attributed his own confusion to per-
sonal inadequacy. Eventually he “became bold and began asking” computer historians
and pioneers to explain it. Their answers were “all different,” with the question of
whether “the primary benefit was one of principle or practice frustratingly blurred.”
Swade concluded that

There was one feature of all the responses about which there was complete
agreement: no one challenged the status of the stored program as the defining fea-
ture of the modern digital electronic computer…. While the reasons given for this
were different, none discounted its seminal significance. But it seems that we
struggle when required to articulate its significance in simple terms and the appar-
ent mix of principle and practice frustrates clarity.
The problem, I think, is that we have never actually agreed that the “stored pro-

gram concept” is. The concept is sometimes treated as an approach to programming,
sometimes as a new kind of architecture. Some authors conflate it with the idea of a
universal machine and associate it with Turing’s ideas on computability. Sometimes
the idea is defined very narrowly, with attention to the interchangeable storage of
programs and data, and sometimes as a grand cluster of ideas accumulated over time.
Self-modifying code may or may not loom large in the discussion. Some authors use
“stored program concept” and “von Neumann architecture” interchangeably, while
others attempt to separate them.

As a historian, my instinct is to explain this proliferation of meanings and associa-
tions historically, going back to the conventional origin point of the stored program
concept in 1945 and sketching its subsequent development in the hands of different
groups of people with different intellectual agendas.

My own attention was drawn to the concept of “stored program” as we investigated
modifications made to ENIAC in early 1948 by a team working closely with John von
Neumann. These changes incorporated key elements of the stored-program approach
several months before Manchester University’s “Baby” computer executed what is
usually called the world’s first stored program in the summer of the same year. Con-
fusion of the kind noted by Swade makes it impossible to clarify the status of the
converted ENIAC, and several other important early machines, as “stored program”
or “not stored program.”

The final part of the paper attempts to begin the work of separating the cluster of
ideas treated as part of the stored program concept by identifying three distinct para-
digms stated in von Neumann’s seminal 1945 report that were incorporated as stand-
ard features by most machines of the 1950s.

2 History of the Stored Program Concept

2.1 The 1945 EDVAC Report

The “First Draft of a Report on the EDVAC” does not, despite the role it has been
assigned in later historical work, function very well as a standards document to rigor-

ously define the concept of “stored program.” Most notably the word “program” nev-
er appears. Von Neumann consistently preferred “code” to “program” and wrote of
“memory” rather than “storage.”

Our current attachment to the term “stored program” as a description for computers
built along lines proposed for EDVAC thus needs some historical explanation. Read
literally the term conveys very little. Any program that can be executed by a computer
must be stored in some medium. The First Draft itself observed that “instructions
must be given in some form which the device can sense: Punched into a system of
punchcards or on teletype tape, magnetically impressed on steel tape or wire, photo-
graphically impressed on motion picture film, wired into one or more fixed or ex-
changeable plugboards—this list being by no means necessarily complete.” [1].

The First Draft argued for the collocation of code and data, though only tentatively:
“While it appeared that various parts of this memory have to perform functions which
differ somewhat in their purpose, it is nevertheless tempting to treat the entire
memory as one organ, and to have its parts as interchangeable as possible….”[1]. Von
Neumann believed that the data requirements of the problems he was interested in
were large enough to require a memory of unprecedented size, and that the program
code would, in comparison, be quite small. Using one set of mechanisms to manipu-
late both would simplify EDVAC.

2.2 Initial Reception

The First Draft circulated quickly between those interested in building computers, and
almost immediately established the model for the next generation of computer project.
However, early discussion of the EDVAC approach addressed a range of innovative
features, with no consensus that the particular method of program storage was the
most important one. Several early introductory computing books focused primarily on
the method of programming, documenting the instruction set of von Neumann’s
planned computer at the Institute for Advanced Studies.

To many of the computer builders of the 1940s, including ENIAC creators J.
Persper Eckert and John Mauchley whose contribution to the new design was pro-
found, the advantage of what is sometimes called the “EDVAC-type” approach was
seen primarily as a way of building a powerful and flexible computer with a relatively
small number of expensive and unreliable vacuum tubes. Creation of a large high-
speed memory was the key engineering challenge posed by this approach. Ease of
programming and speed of changeover from one problem to another were acknowl-
edged as benefits of this approach, and were related to the storage of code and data in
the same electronic memory.

2.3 The Phrase “Stored Program”

We could not find the phrase “stored program in any of the early computing confer-
ence proceedings and primers published in the 1940s. Its earliest known usage oc-
curred in 1949 by a small team at IBM’s Poughkeepsie facility producing the “Test
Assembly,” IBM’s first EDVAC-type computer. This experimental system was built

around firm’s first electronic calculator, its 604 Electronic Calculating Punch, which
became the arithmetic unit of the lashed-up computer. They added a new control unit,
cathode ray tube memory, and magnetic drum.

An internal proposal written by Nathaniel Rochester in 1949 [3] noted that the
plug-board approach was not viable with large programs, which could be solved by
reading “the calculating program into the machine on a deck of tabulating cards and
to retain it, along with the numerical data, in the storage section of the calculator.” To
distinguish between the program held on the 604’s standard plug board and the new-
style programs stored either in the 250 word electronic memory or on the drum the
team began to call the latter the “stored program.” Rochester’s document was titled
“A Calculator Using Electrostatic Storage and a Stored Program.” (Thanks go to Peg-
gy Kidwell of the Smithsonian for alerting me to this document).

Within IBM the meaning of “stored program” quickly evolved from a literal de-
scription of a particular kind of programming mechanism into a general description of
EDVAC-type machines. During the 1950s the phrase pops up occasionally in confer-
ence papers, particularly those delivered by IBM employees, but as all powerful digi-
tal computers by then followed this model people generally just referred to “large-
scale digital computer.”

2.4 Historians Adopt “Stored Program”

In the late 1970s and 1980s the history of computing emerges as an academic sub-
field. Early work focused on the machines of the 1940s. Following the lead of pioneer
turned historian Herman Goldstine the idea of the “stored program computer” was
borrowed from technical discourse, developing from a fairly obscure term into a cen-
tral concept in heated debates over what should be considered the first true computer
and why.

Put simply, the community resolved this intractable and distracting wrangle by
agreeing on a string of words that clarified what each of the key early machines had
accomplished. ENIAC, for example, became the first “large-scale general-purpose
digital electronic computer to be fully operational.” The Cambridge EDSAC and
Manchester Baby were recognized as the first operational stored program computers,
patterned after the EDVAC design, but there was little need or interest in defining the
“concept” more rigorously to identify its necessary and sufficient characteristics.

More recently, historians of computing largely turned their attention away from the
1940s, having reached a consensus on the honors to be granted to each early machine
and formulated a consensus narrative on the events of the decade. As Swade noted,
the stored program concept is still enshrined in popular and scholarly histories as a
key transition but receives little new analysis.

2.5 The Stored Program Concept Meets Universality

From the late 1950s onward, with the rise of theoretical computer science and a new
enthusiasm for work on abstract models of computation, the digital computer was
increasingly reinterpreted as an embodiment of the universal Turing machine. Its key

benefit was therefore the ability of the computer to treat instructions as data and mod-
ify them programmatically. The confusion encountered by Swade seems to reflect
differences in opinion held by those influenced by the pragmatism of the 1940s and
those favoring the theoretical concerns developed later. The resurgence of the stored
program concept, now as a concept for historical discussion, went along with its in-
creasing identification with foundational ideas from the new discipline of computer
science.

In recent decades the manipulation of programs and data interchangeably in the
same memory units has increasingly been taken as the key defining characteristic of
the stored program computer, and thus of modern computers. In turn, the concepts of
stored program and general purpose computer have sometimes conflated with the
more formal concept a computer being Turing complete or “universal” if equipped
with a memory of infinite size.

To cite just three of many recent examples of this conventional wisdom: the Wik-
ipedia page on “stored program computer” currently defines it as “one which stores
program instructions in electronic memory. Often the definition is extended with the
requirement that the treatment of programs and data in memory be interchangeable…
the stored program computer idea can be traced back to the 1936 theoretical concept
of a universal Turing machine.” In his recent Computing: A Concise History [4], Paul
Ceruzzi defined stored program computers as storing “both their instructions—the
programs—and the data on which those instructions operate in the same physical
memory device…” and suggested that this “extended Turing’s ideas into the design of
practical machinery.” Even Swade himself retreated from the endearingly bold con-
fession of confusion quoted earlier to the rather conventional conclusion that “the
internal stored program… is the practical realization of Turing universality” and thus
conferred “plasticity of function, which in large part accounts for the remarkable pro-
liferation of computers and computer-like artifacts.” [2]

Arguing about the influence Turing might or might not have exerted over von
Neumann has become an enjoyable parlor game for historians of computing. That
question aside, one will find very few references to Turing’s theoretical work among
the discussions of those building computers in the 1940s [5, 6]. Atsushi Akera [7] has
suggested that the retroactive embrace of Turing as a foundation for this practical
work is tied to the emphasis within computer science, as it emerged as a distinct dis-
cipline during the late-1950s and 1960s, on abstract models of computation. In later
discussion the advantages of stored program machines were often justified according
to the theoretical concerns of later years rather than the pragmatic issues of primary
importance to their designers.

In this sense, the search for the logical foundations of computing and the search for
is historical foundations may pull us in opposing directions. It was its very purity and
abstraction from the messy details of actual hardware that earned the Turing Machine
its iconic place within computer science. The ideas of Turing completeness and of the
Universal Turing Machine served to decouple theoretical computer science from the
material world of computing platforms and architectures. For example, once a virtual
computer built within Conway’s Game of Life was shown to be computationally
equivalent to a Universal Turing Machine that single fact told us that, with sufficient

time and a large enough cellular matrix, this computer could execute the same algo-
rithms as any machine build from conventional components. The intellectual utility of
this approach is clear, as is its strategic benefit to the early computer science commu-
nity at a time in which it was struggling to separate itself intellectually from mathe-
matics, electronic engineering, and scientific service work to other disciplines.

The late Michael Mahoney struggled for many years to encapsulate the history of
theoretical computer science [8]. His great theme was the need of scientific communi-
ties to construct their own historical narratives. Mahoney saw theoretical computer
science as an assemblage of mathematical tools originally developed in quite separate
contexts, from group theory and Lambda calculus through to Chomsky’s hierarchy of
grammars. On a still larger scale, work on mathematical logic and on the engineering
of calculating machines both had long but largely distinct histories. Yet from within
the discipline and from the present-day viewpoint the connections between these
things came to seem obvious and history is often written as if work over the centuries
had been directed towards the development of the computer or as if the computing
pioneers of the 1940s were inspired primarily by the work of Turing.

As Mahoney wrote, the interest of practitioners in “finding a history… has its real
dangers” because while scholarly historians and practitioners “both seek a history” it
is “not for the same purpose and not from the same standpoint.” [8]Abstraction is the
soul of computer science, but as historians we lose something vital if we abstract
away from the historical grubbiness of early computer projects, their focus on engi-
neering challenges, their specific goals and roots in the thinking of the 1940s. The
abstraction from real computers and real computing practice provide by a focus on
Turing completeness is good for theory but bad for history. For example, the effort by
Raul Rojas to claim Konrad Zuse’s 1943 Z3 computer as universal [9] is an impres-
sive party trick, but diverges entirely from the way in which the machine was de-
signed, how it was actually used, or indeed from anything that would have made
sense in the 1940s. The programming method described construction of an impossibly
long paper tape, and a massive loss of computational performance. Calculation would
have been quicker by hand. To me the real lesson is that the Z3 could have been Tu-
ring complete with only minor design changes, but wasn’t because the concept and its
benefits were not yet widely understood. Indeed, Zuse later claimed to have consid-
ered and rejected treating program instructions as data while working on its design.
The past really is a foreign country. Yet Rojas was able to raise the status of the ma-
chine, and German pride, with this appeal to the world of theory.

In this context, it is worth noting that von Neumann’s 1945 report specifically for-
bade unrestricted code modification, a notable conceptual divergence from what is
now understood as the Turing machine model of the universal computer. The EDVAC
described therein did rely on code modification for many common operations, includ-
ing loop termination, other kinds of conditional branching, and altering the address
data is fetched from (for example to obtain a value from a different cell within an
array each time a block of code is looped through). This reflected a broader design
philosophy of radically simplifying computer architecture by replacing the special
purpose mechanisms common in earlier designs with a small number of general pur-
pose mechanisms.

However, von Neumann’s instruction set for EDVAC explicitly prevented instruc-
tions from being fully overwritten [5, 10]. Only address fields could be changed. One
of the 32 bits in each word of memory flagged it as holding either program or data. A
transfer operation applied to an instruction word would overwrite only the address
field.

3 Beyond “Stored Program”

Like the Goto statement, discussion of the “stored program concept” has outlived the
purpose for which it was created and provides a shortcut to confusion. The time has
come to replace it, as an analytical category, with a set of more specific alternatives
amenable to clear and precise definition. Below I discuss one proposed partial re-
placement in some detail and sketch two more.

3.1 The Modern Code Paradigm

The first of these is the “modern code paradigm.” This new term describes the pro-
gram-related elements of the 1945 “First Draft…” design that become standard fea-
tures of 1950s computer design. Some items specified in the report were ignored or
changed by actual computer designers (such as the lack of a dedicated conditional
branch instruction), while some common code capabilities of 1950s computers (such
as index registers) came from other sources.

Looking for novel code-related features from the 1945 First Draft that had become
taken-for-granted features of computers a decade later illuminates the process by
which a sprawling, idiosyncratic and brilliant document became a dominant paradigm
for the builders of computers.

As one reviewer of this paper noted, this analysis parallels the work of computing
theorists to build abstract models of computation based around the stored program
approach rather than Turing machines. These include the Random Access Machine
(RAM) and Random Access Stored Program machine (RASM). Space does not per-
mit further comment, except to point out that the objectives of the historian and the
theorist remain distinct. Whereas the theorist looks for the minimal necessary capabil-
ities for universality, my objective here is to define the maximal set of features pre-
sent in the 1945 draft that actually made it into the standard designs of the 1950s.

1. The program is executed completely automatically. To quote the First Draft,
“Once these instructions are given to the device, it must be able to carry them out
completely and without any need for further intelligent human intervention.” This
was essential for electronic machines, whereas manual intervention at branch
points had been workable with slower devices such as the Harvard Mark I.

2. The program is written as a single sequence of instructions, known as “or-
ders” in the First Draft, which are stored in numbered memory locations
along with data. These instructions control all aspects of the machine’s opera-
tions. The same mechanisms are used to read code and data. As discussed earlier,
the First Draft did specify the explicit demarcation of memory locations holding

code from those holding data. It also pointed toward the idea of a program as a
readable text: “it is usually convenient that the minor cycles expressing the succes-
sive steps in a sequence of logical instructions should follow each other automati-
cally.”

3. Each instruction within the program specifies one of a set of atomic operations
made available to the programmer. This was usually done by beginning the
instruction with one of a small number of operation codes. Some operation
codes are followed by argument fields specifying a memory location with which to
work or other parameters. Altogether, orders required between 9 and 22 bits to ex-
press. Actual machines usually followed this pattern. The main exception comes
with Alan Turing’s Ace design and its derivatives, which stuck close to the under-
lying hardware by coding all instructions as data transfers between sources and
destinations.

4. The program’s instructions are usually executed in a predetermined sequence.
According to the First Draft, the machine “should be instructed, after each order,
where to find the next order that it is to carry out.” In the EDVAC this was to be
represented implicitly by the sequence in which they were stored, as in “normal
routine” it “should obey the orders in the temporal sequence in which they natural-
ly appear.”

5. However, a program can instruct the computer to depart from this ordinary
sequence and jump to a different point in the program. “There must, however,
be orders available which may be used at the exceptional occasions referred to, to
instruct CC to transfer its connection [i.e. fetch the next instruction from] any other
desired point” in memory.” This provided capabilities such as jumps and subrou-
tine returns.

6. The address on which an instruction acts can change during the course of the
program’s execution. That applies to the source or destination of data for calcula-
tions or the destination of a jump. This address modification capability was ex-
pressed rather cryptically in the First Draft, the final sentence of which noted that
when a number was transferred to a memory location holding an instruction only
the final thirteen digits, representing the address μρ, should be overwritten. Actual
computers achieved functionally equivalent capability through some combination
of unrestricted code modification, indirect addressing mechanisms, and conditional
branch instructions.

A consequence of the above was that the logical complexity of the program was
limited only by memory space available to hold instructions and working data. This
contrasted with the dependence of machines such as the original ENIAC or SSEC on
a variety of resources such as program lines, plug board capacity, or tape readers as
potential limitations on logical program complexity.

3.2 The von Neumann Architecture

The modern code paradigm is not intended a new name for the “stored program
concept” or as an idea encompassing the full scope of meanings associated with the

latter. Indeed, the more specific scope of the former is a large part of its appeal. There
were clearly several other aspects of the First Draft and subsequent publications by
members of von Neumann’s group in Princeton that had a major influence on later
computer builders.

To adapt an existing term, one of these facets might be called the “von Neumann
architectural paradigm.” This includes the basic structure of “organs” found in the
report, including the separation of memory from control and arithmetic. Associated
with this are the serialization of computation, so that only one operation takes place at
a time, and the routing of all memory transfers through the central arithmetic unit.
Also the system of special purpose registers to serve as source and destination for
arithmetic and logic instructions, and to provide a program counter and instruction
register for control purposes. The von Neumann architecture has general been more
clearly defined within the technical literature than has the stored program concept.
One might, as several have, dispute the extent to which it is fair to attach only von
Neumann’s name to these concepts. “EDVAC architecture paradigm” could serve as
an alternative.

3.3 The EDVAC Hardware Paradigm

The third major facet might be termed the “EDVAC hardware paradigm.” The
EDVAC approach appealed to early computer builders in large part as a way of build-
ing powerful, flexible machines using a relatively small number of components. In-
fluential hardware ideas in the “First Draft” report include use of delay line or storage
tube memory, building logic entirely from electronic components, representing all
quantities in binary, and keeping special purpose or duplicate hardware mechanisms
to a minimum (von Neumann considered that a multiplier would justify itself, but that
duplicating adders or providing hardware for more specialized functions would pro-
vide little benefit). With the possible exception of the memory technologies discussed
these hardware features were not unique, but collectively they represented a bold
commitment to new technologies at a time when computing group within Harvard,
Bell Labs, and IBM were still drawing up plans for new high-end machines based on
relay storage and paper tape control. Thus we believe that the hardware choices speci-
fied for EDVAC in the First Draft function as a paradigm, in Thomas Kuhn’s core
sense of a powerful and tangible exemplar [11].

3.4 Separate Trajectories

These three paradigms have intertwined early histories, but were always at least
partially separable and ultimately diverged. Many machines of the 1940s implement-
ed some aspects of the EDVAC paradigms but not others. Alan Booth’s ARC fol-
lowed both the modern code paradigm and the von Neumann architecture but imple-
mented them using relay hardware. Martin Campbell-Kelly observed that Booth’s
claimed operation date of 12th May 1948 would make this “the first operational
EDVAC-type stored program computer (although it was not of course electronic).”
[12] Alan Turing’s design for the ACE adopted von Neumann’s architecture and fol-

lowed EDVAC’s hardware paradigm but relied on a different kind of instruction for-
mat with no conventional operation codes. As Campbell-Kelly noted, “Most comput-
ers are sufficiently alike that a knowledgeable programmer can get a fairly good ap-
preciation of a machine from its instruction format and a table of operation codes. The
Pilot ACE is an exception because its architecture was quite unlike that of any mod-
ern computer….” [13] ENIAC after its 1948 conversion followed the modern code
paradigm with surprising faithfulness. The feel and structure of its program code
bears an unmistakable kinship with those produced for other early machines.

The machines of the mid-1950s tended to implement all three paradigmatic aspects
of the First Draft’s design for EDVAC. The paradigmatic influences of these three
were diverging again by the end of the decade. Its relevance as a hardware paradigm
faded first, as transistors and core memories made vacuum tubes and delay lines obso-
lete. The von Neumann architectural paradigm enjoyed a longer life, though its pri-
macy was gradually chipped away as innovations such as parallel processing, mes-
sage passing interfaces, instruction pipelining, direct memory access by peripherals,
stacks, and addressable registers gradually erased its radical minimalism.

In contrast the modern code paradigm has remained largely intact as a description
of the machine language executed by processors (though not of the languages used by
humans to write programs). It was extended and made more specific in many ways,
not least by von Neumann’s own 1946 description of the planned structure of his
Institute for Advanced Studies machine. [14] It was not, however, overturned.

References

1. von Neumann, J.: First Draft of a Report on the EDVAC. IEEE Annals of the History of
Computing 15, 27-75 (1993)

2. Swade, D.: Inventing the User: EDSAC in Context. The Computer Journal 54, 143-147
(2011)

3. Rochester, N.: A Calculator Using Electrostatic Storage and a Stored Program. IBM's
Early Computers Sources collection. IBM Archives (1949)

4. Ceruzzi, P.: Computing: A Concise History. MIT Press, Cambridge, MA (2012)
5. Priestley, M.: A Science of Operations: Machines, Logic, and the Invention of

Programming. Springer, New York (2011)
6. Lavington, S. (ed.): Alan Turing and his Contemporaries. British Informatics Society Ltd,

Swindon, UK (2012)
7. Akera, A.: Calculating a Natural World: Scientists, Engineers, and Computers During the

Rise of U.S. Cold War Research. MIT Press, Cambridge, MA (2006)
8. Mahoney, M.S., Haigh, T. (ed.).: Histories of Computing. Harvard University Press,

Cambridge, MA (2011)
9. Rojas, R.: How to Make Zuse's Z3 a Universal Computer. IEEE Annals of the History of

Computing 20, 51-54 (1998)
10. Godfrey, M.D., Hendry, D.F.: The Computer as von Neumann Planned It. IEEE Annals of

the History of Computing 15, 11-21 (1993)
11. Kuhn, T.S.: Second Thoughts on Paradigms. The Essential Tension: Selected Studies in

Scientific Tradition and Change, pp. 293-319. University of Chicago Press, Chicago
(1979)

12. Campbell-Kelly, M.: Foundations of Computer Programming in Britain (1945-1955).
Ph.D. thesis, Mathematics and Computer Studies, Sunderland Polytechnic (1980)

13. Campbell-Kelly, M.: Programming the Pilot Ace: Early Programming Activity at the
National Physical Laboratory. Annals of the History of Computing 3, 133-162 (1981)

14. Burks, A.W., Goldstine, H.H., Neumann, J.v.: Preliminary Discussion of the Logical
Design of an Electronic Computing Instrument. Institute for Advanced Studies, Princeton,
NJ (1946)

