
JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 39

V
viewpoints

Historical Reflections
Where Code Comes From:
Architectures of Automatic
Control from Babbage to Algol
Considering the evolving concept of programming.

of a set of instructions that direct the
performance of a series of operations,
enabling a computer to carry out a task
without human intervention.

Babbage Proposes
a Control Operation
Unlike Babbage’s earlier proposed cal-
culator, the Difference Engine, the Ana-
lytical Engine was what would later be
called a “general-purpose” automatic
computer. This flexibility meant it would
have to be “ordered” or “instructed” to
carry out whatever particular sequence

I
N OUR PRE V I OUS Communica-
tions column (September 2015)
we noted that a celebrated table
published by Ada Lovelace in
1843 was not a computer pro-

gram, despite frequent claims to the
contrary. Here we turn to a related
question: where did computer code
come from? Back in the 1840s no-
body talked about “programming”
Charles Babbage’s planned engines.
More importantly, nobody had yet
formulated the concept of a program
as a series of instructions controlling
the operation of a general-purpose
computer. The work of Charles Bab-
bage and Ada Lovelace provides an
important milestone on the road to
this invention, but marks the begin-
ning of the story rather than its end.

In this column we explore the rest of
that story, returning briefly to the world
of Lovelace and Babbage before moving
on to the 1940s when their ideas were
independently rediscovered, extended,
and finally realized in actual machin-
ery. Developments came thick and
fast, moving in just a few years from
the earliest relay computers controlled
by “coded” arithmetic instructions on
tape to ENIAC, the first computer to
automatically carry out computations
with complex structures including
branches and nested loops. This was
the context in which the word “pro-
gramming” was initially applied to a
computer, originally to describe the ac-

tion of the machine’s control wires, cir-
cuits, and switches when triggering the
appropriate sequence of mathemati-
cal operations. Before ENIAC was even
finished its creators, in collaboration
with John von Neumann, had come up
with a new approach in which control
and arithmetic operations were both
represented in a single series of coded
instructions stored in an addressable
memory unit. That was soon called a
computer program, and although the
meaning of the term has continued to
evolve it has retained this basic sense

DOI:10.1145/2846088 Thomas Haigh and Mark Priestley

U
.S

.
A

R
M

Y
 P

H
O

T
O

U.S. Army photograph of the installed EDVAC.

http://dx.doi.org/10.1145/2846088

40 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

viewpoints

digital computers were being built.
Their capabilities were similar to those
Babbage planned for the Analytical En-
gine, though they were conceived with-
out knowledge of his designs and most
used electromechanical relays rather
than cogwheels to represent numbers.
They included the Mark I computer
built by IBM for Harvard University,
a series of wartime machines built by
Bell Labs in New York, and the Z3 built
by Konrad Zuse in Berlin.

Like the planned Analytical Engine,
these machines carried out sequences
of arithmetic operations, now repre-
sented as patterns of holes punched
in control tapes. These patterns were
called “codes,” mirroring earlier uses
of “code” to describe the encoding of
messages onto paper tape for machine
transmission (Baudot code) or into
dots and dashes for human transmis-
sion (Morse code).b

The designers of Mark I thought of
these orders as primarily arithmetical,
each specifying an operation to carry
out as data was transferred from one
register to another. Rather than wind-
ing the control tape back to repeat se-
quences, loops were implemented in
the most literal sense possible: gluing
the ends of the control tape together
to form a physical loop. This is, we
strongly suspect, the origin of the term
“loop.” Mark I thus used coded or-
ders for arithmetic, but not for control
structures. Loops were mapped onto
the physical configuration of the tape,
and transfers of control were carried
out manually by humans. It took code,
paper loops, and humans to carry out
the functions later automated with
program code alone, so specifying a
problem to run on Mark I required
preparation of both coded orders for
the machine and detailed instructions
for its human operators.

A small number of orders did per-
form control functions, most impor-

b For example, in the Bell Labs case “the numeri-
cal results may be translated into special codes
and perforated on standard teletype tape.” (B.L.
Sarahan, “The Relay Interpolator: A Descrip-
tion of its Operation,” Naval Research Labora-
tory Report R-3177, Sept. 25, 1947, v.) Likewise,
in Mark I “the perforations in the control tape
corresponding to code 21 in the Out column.”
(Staff of the Harvard Computation Labora-
tory, A Manual of Operation for the Automatic
Sequence Controlled Calculator. Harvard Univer-
sity Press, Cambridge, MA, 1946, 14).

of arithmetic operations (addition, sub-
traction, multiplication, or division) was
needed. These orders were punched
onto “operation cards” joined in a con-
tinuous chain, forming something anal-
ogous to the control roll of a player piano
or the paper tapes used by later comput-
ers.a A separate sequence of “variable
cards” told the Engine which locations
in its “store” to use for the arguments
and results of each operation.

Babbage recognized that punching
a card for every operation needed in a
complex calculation would be inefficient
and inflexible, as most computations
have a structure in which sequences of
operations are repeated. Fully automat-
ing computation meant making explicit
and mechanizing not just sequences of
arithmetic operations but also the con-
trol processes needed to direct these
repetitions. Babbage envisioned mecha-
nisms to “back up” the chains of cards
to repeat a sequence of operations. The
rewinding operation would be trig-
gered by special “combinatorial cards”
placed among the operation cards.
When Lovelace published details of her
planned computation, in what has be-
come one of history’s best-known end-
notes, she relied on this capability when
defining two nested loops. In our previ-
ous column we observed that her table
omitted the control information needed
to direct the Engine through these loops
and was closer to being a simulated trace
than an actual program. She described
the overall structure of the computation
more abstractly in a symbolic expres-
sion inspired by mathematical notation.

This omission is not surprising, as
Babbage’s ideas about the backing-up
scheme were still rather provisional.
Only in 1844 did he even prepare
lists of the operations that his engine
would support.1 Babbage specialist Al-
len Bromley described them as docu-
menting a “programmer’s interface.”
Along with the expected arithmetic
operations, Babbage defined an opera-
tion of “Ascertaining if any Variable =
0.” The card ordering this operation
would specify how many cards were
to be skipped if the variable defined
by the current variable card was zero.
That marked a crucial generalization

a Charles Babbage, “On the Mathematical Pow-
ers of the Calculating Engine,” 1837 manu-
script reprinted in several collections.

of the notion of “operation” beyond
the familiar operations of arithmetic to
encompass the control operations that
determine exactly which sequences of
arithmetic operations are carried out.

Punched Cards and
Analog Computers
The Analytical Engine was never
built, or even completely and stably
designed. Over the next nine decades
a variety of calculating and counting
machines were developed, including
various kinds of punched card tabu-
lating equipment and a number of
differential analyzers. None of their
designers attempted to revive Bab-
bage and Lovelace’s pursuit of a gen-
eral-purpose automatic computing
machine. Configuring these machines
was not called “programming.”

The punched card machines each
tackled a specialized operation, such as
tabulating cards or sorting them. Each
could be wired to carry out a particular
variant on this task, for example to ig-
nore some columns on the card while
calculating totals and subtotals based
on others. While these machines were
applied to scientific calculations from
the 1930s onward most of the work we
think of as executing a program was
carried out by human operators, not by
the machines themselves.

Analog computers, such as differ-
ential analyzers and gun-control sys-
tems, took a fundamentally different
approach, representing numbers not
as digits but as continuously varying
quantities. Changing variables were
modeled as changes in voltage or me-
chanical rotation in a particular unit
within the machine. The comput-
ers could be configured, often with
wrenches or screwdrivers, to specify
particular relationships between these
units, modeling the terms in an equa-
tion. Each piece of the machine per-
formed a single task throughout the
computation. These machines were
not following instructions as they
computed, and so the concept of a pro-
gram, according to which devices carry
out a sequence of different operations
over time, does not apply to them.

Codes and Coding
We shall therefore jump forward from
the time of Babbage directly to the
early 1940s, when the first automatic

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 41

viewpoints

receiving unit. ENIAC resembled a Ra-
dioShack boxed electronic kit, in that
configuring it for a particular job in-
volved wiring together the units need-
ed to build a special-purpose machine.

The ENIAC team initially called the
task of configuring ENIAC to carry out
a particular problem “setting up” the
machine. A particular configuration
was called a “set-up” and documented
in a diagram showing the wiring pat-
terns and switch settings needed on
each unit. This representation is quite
different from a modern program, or
even from the Harvard Mark I control
tape. Indeed, the ENIAC approach to
sequencing operations is much more
difficult for modern audiences to grasp
than the coded instructions used by
the relay computers.

When computer scientists look
back at the computers of the 1940s it
is often to argue about which of them
were “Turing complete.” This depends
in large part on their ability to imple-
ment a conditional branch, meaning
the ability to select between two possi-
ble courses of action. Deciding whether
to terminate a loop is seen as a special
case of conditional branching, which is
indeed how the instruction sets of later
computers implemented looping.

Babbage, Lovelace, and the design-
ers of ENIAC, however, modeled the
top-level structure of computations in
terms of loops rather than branches.
Lovelace’s mathematical notation ex-
pressed a computation in summary
form as nested sequences of opera-
tions repeated a certain number of
times. ENIAC’s designers first consid-
ered building “about 30 units which are
capable of receiving program pulses
on one line and transmitting them on
either of two lines in accordance with
pulses received on another line.” If one
conceptualizes ENIAC’s control wires
as rails and its control pulses as trains,
these switches would steer the pulses
onto one or another track depending
on the control signals received. This is
perhaps why the term “branch” was lat-
er introduced to describe this control
action, as pulses literally followed one
or another branch through ENIAC’s
networks of control wires depending
on the operations of its control circuits.

However, ENIAC’s designers soon
rejected simple binary switches, in
favor of more complex “steppers”

tantly one that halted the machine au-
tomatically when a loop termination
condition was satisfied. At this point,
a machine operator would remove the
looped control tape from the tape reader
and replace it with whatever sequence
came next. Changing tapes manually
might seem inefficient, but the machine
ran so slowly that operators could plau-
sibly keep up with them. Loop execution
times on Mark I were measured in min-
utes rather than microseconds.

The words “program” and “pro-
gramming” were not originally applied
to these machines. However, by 1944
the staff of the Harvard Computing
Laboratory had recognized the work of
“coding” problems into sequences of
operation codes as a distinct task: “…
the mathematician … chooses the nu-
merical method … such functional, val-
ue and control tapes as are required are
then computed, coded and punched.
Since the mathematician cannot al-
ways be present while the calculator
is running, instructions must be pre-
pared to guide the operating staff.”c

The system of tape-driven automatic
control was later extended by provid-
ing instructions to shift control be-
tween more than one tape reader. For
example, a computer with four readers
might use them for code sequences
corresponding to inner loop, outer
loop, initial setup, and the printing of
results. This system was stretched to
breaking point, and beyond, with the
completion in 1948 of IBM’s Selective
Sequence Electronic Calculator. As the
word “Selective” suggests, the SSEC
could automatically select which of sev-
eral dozen paper-tape readers to take
its next instruction from. SSEC staff
had to grapple with tape rolls weighing
400 pounds, used to prepare data tapes
looped at high speed past multiple read
heads so that values could be looked
up from coded tables. A custom lift was
engineered to hoist these tapes, which
were so wide that a special machine was
built to glue their ends together.

ENIAC and the Automation of Control
The term “programming” comes, a lit-
tle indirectly, from the project to build
a much faster electronic computer at
the University of Pennsylvania. The un-
precedented speed of ENIAC, complet-

c Ibid, p. 50.

ed in 1945, forced its designers to come
up with an entirely different control
system. No paper tape could possibly
read operation codes rapidly enough
to keep its electronic circuits busy. Nei-
ther was it practical to expect operators
to change tapes every few seconds as
ENIAC completed a loop or subroutine
and needed to move on to the next se-
quence of operations.

People often expect the history of
technology to consist of a fairly direct
series of advances by which primitive
old machines gradually come to look
and act ever more like modern ones.
ENIAC is difficult to fit into this view of
history. It was the first general-purpose
electronic digital computer, being re-
configured to tackle entirely different
kinds of problems from weather fore-
casting to prime number detection. Its
control mechanism provided the full
range of capabilities we associate with
modern computers, including condi-
tional branches and nested loops, but
used an entirely different approach.

As we explain in our new book,
ENIAC in Action: Making and Remak-
ing the Modern Computer,3 ENIAC con-
sisted of dozens of distinct units, most
built to carry out specialized compu-
tational functions such as multiplica-
tion, addition and number storage,
loop control, or table look-up. When
one unit finished a task it generated a
“program pulse” to inform the unit re-
sponsible for the next operation that
it was time for it to wake up and do
something. What ENIAC did next was
determined by two things. The first
was its wiring, as the destination of the
program pulse depended on where in
ENIAC the other end of the wire carry-
ing it had been plugged. The second
factor was the switch settings on the

The words
“program” and
“programming”
were not originally
applied to
these machines.

42 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

viewpoints

ing operations (spin, rinse, wash, and so
on). Echoing this, a primary meaning of
“program” on the ENIAC was to describe
a single operation set up on one of its
units. What were being programmed
were the operations of the internal cir-
cuitry of that unit.

By late 1945, however, the ENIAC
team was beginning to talk of “pro-
gramming” in something much closer
to its modern meaning. This reflected
the emergence of an entirely new way
to think about automatic control.

EDVAC and the Modern
Code Paradigm
“The First Draft of a Report on the ED-
VAC,” composed in the spring of 1945
by mathematician John von Neumann
and based on his work with mem-
bers of the ENIAC team, never led to
a second draft, still less a published
article. It nevertheless laid out the ba-
sic architecture from which almost all
subsequent computers have evolved.
Computers patterned after the basic
structure von Neumann proposed for
the EDVAC, a successor to ENIAC be-
ing designed at Penn under a govern-
ment contract, are often called “stored
program” computers. We have previ-
ously criticized this term as vague and
irredeemably overloaded with conflict-
ing meanings, but those words do at
least have the virtue of suggesting the
attractiveness of EDVAC had some-
thing to do with its control system.5

EDVAC, as described by von Neu-
mann, would drop ENIAC’s special-
purpose units and its elaborate system
of distributed control. Like Babbage’s
Analytical Engine and the relay com-
puters of the 1940s, EDVAC would read
and decode orders one at a time, per-
forming the operation specified by the
code. The novelty was the code inte-
grated control and arithmetic instruc-
tions in a single, aggressively mini-
malistic, set of orders. EDVAC did not
need the hybrid control schemes of the
relay machines or the special-purpose
mechanisms and programming wires
and switches of ENIAC.

We have previously identified the
key aspects of the EDVAC approach to
automatic control as:

 ˲ The program is executed com-
pletely automatically.

 ˲ The program is written as a single
sequence of instructions, known as

each able to trigger up to six differ-
ent sequences of operations. ENIAC’s
“master programmer” unit combined
enough steppers and counters to count
the iterations of each sequence and
control up to 10 nested loops. Routing
a control signal to a special input on
each stepper would terminate a loop
immediately, meaning that looping
mechanisms also supported simple
conditional branching. It was as if the
two alternative statements in an “if …
then” statement were treated as loops
that would be iterated at most once. In-
verting the later conception of looping
as a special case of conditional branch-
ing, ENIAC made looping and loop ter-
mination the fundamental behavior.

Early in the ENIAC project, before
design work had progressed very far,
philosopher turned engineer Arthur
Burks produced a table showing how
ENIAC could compute an artillery tra-
jectory, the task for which the machine
had been commissioned. Although in-
dependently developed, the structure
of Burks’ table strongly resembled that
produced a century earlier by Lovelace.
In both tables, rows represented steps
in the calculation, each storage unit was
given its own column, and cells showed
the content of each unit at each point in
the calculation.d As we discussed in our
September 2015 column, the tables are
not in themselves programs, and are
best viewed as traces or walkthroughs of
the machine’s operation.e Both tables
indicated a need for nested loops, but
when they were produced neither tar-
get machine had a well-defined mecha-
nism for iteration. In a sense, the tables
served as functional specifications for
the machine designers: devise a mecha-
nism to generate this sequence of op-
erations and your machine will success-
fully complete this computation.

This striking convergent evolution,
despite the very different architectures
of the two machines, shows the analy-
sis of a problem and its reduction to a
series of arithmetic operations had very

d We have exploited this similarity to produce an
ENIAC set-up that performs the Bernoulli cal-
culation as specified by Lovelace. Run on an
ENIAC simulator, it does indeed generate the
sequence of Bernoulli numbers.

e Allen Bromley used the term “walkthrough”
to describe tables like Lovelace’s in “Charles
Babbage’s Analytical Engine, 1838,” Annals of
the History of Computing 4, 3 (1982), 215.

little to do with the specifics of the con-
trol system that would ultimately direct
those operations. Indeed, the methods
used to plan computations for auto-
matic computers often incorporated
those used with earlier technologies,
whether in the application of punched
card machines or desk calculators to
large-scale mathematical work or the
analysis of printed forms and clerical
procedures in the office.

Earliest Discussion
of “Programming”
Our reference to ENIAC’s “master pro-
grammer” in the previous section alerts
you to two things. The first is the word
“program” became entangled with the
control of automatic computers during
the ENIAC project.f The second is it did
not mean what you expect. By the 1950s
“master programmer” would read as a
slightly odd job title. In 1944 it was a pair
of boxes stuffed with electronics to re-
peatedly trigger sequences of operations
by generating control pulses. In fact the
words “program” and “programming”
cropped up in project documents to de-
scribe many different aspects of ENIAC’s
control system. As well as calling its con-
trol signals “program pulses,” a June
1944 progress report described two ac-
cumulator units as being “automatically
programmed to receive the multiplier
and multiplicand” when a program
pulse triggered the multiplier unit to
which they were attached. This use of
“program” fits with the notion, familiar
to Babbage, that an automatic computer
is built to carry out defined sequences of
operations. Its control mechanism must
trigger the performance of the right op-
erations in the correct order. This is very
similar to the meaning of “program” in
other contexts—for example, the work
of a radio programmer who selects and
schedules programs for broadcast, the
program for a series of concerts, or the
program of study followed over time by
a student. The use of “programmer” as
the name for a simple mechanical con-
trol unit on a washing machine reflects
a similar usage—turning the dial to
a particular point triggers the perfor-
mance of a particular sequence of wash-

f Discussed in D.A. Grier, “The ENIAC, the verb
“to program” and the emergence of digital
computers.” IEEE Annals of the History of Com-
puting 18, 1 (Jan. 1996), 51–55.

JANUARY 2016 | VOL. 59 | NO. 1 | COMMUNICATIONS OF THE ACM 43

viewpoints

more important than, and facilitated,
EDVAC’s more celebrated innovation
of storing both instructions and data
in the same writable and addressable
memory. The first known program
written in the EDVAC style was devel-
oped by von Neumann himself, and is
now on display at the American Philo-
sophical Society in Philadelphia.6 The
first to be run on an actual computer
was executed directly from a read-only
memory on ENIAC in April 1948, after
its conversion to the new program-
ming mode.4 A few months later, at
the University of Manchester, a pro-
gram was loaded into an experimental
writable memory and executed.

In the First Draft, von Neumann fol-
lowed the Mark I terminology, giving
an “order code” that defined EDVAC’s
instruction set. This usage was extend-
ed in an influential series of reports
from the computing team he set up
at the Institute for Advanced Studies
in 1946 to construct his own EDVAC-
like computer. These reports divided
the process of problem preparation
into two broad phases. “Planning” was
described as “a mathematical stage of
preparations,” but “coding” encom-

passed drawing flow diagrams as well
as writing instructions.g

At Penn, however, the meaning of
the verb “to program” quickly shifted
from describing the action of the con-
trol circuits responsible for trigger-
ing operations at the correct time to
describing the work of the humans
devising such sequences. In late 1945,
a report described the practices used
in “planning a set-up for the ENIAC”
as “programming techniques,”2 and a
letter from one of the project’s leaders
noted “the EDVAC will contain a large
number of units capable of remember-
ing programming instructions,” to be
copied from tape “before the actual
program is started.”h “Programming”
was by then roughly synonymous with
von Neumann’s “coding,” and by early

g Goldstine, H.H. and von Neumann, J. Planning
and Coding Problems for an Electronic Comput-
ing Instrument, Part II, Volume 1 (Apr. 1, 1947,
section 7.9). Drawing flow diagrams was de-
scribed as the “dynamic or macroscopic”
stage of coding, and writing instructions as
the “static or microscopic” stage.

h H. Goldstine to H. Curry, Oct. 3, 1945, in the
collection “ENIAC Patent Trial Collection” in
the University of Pennsylvania archives.

“orders” in the First Draft, which are
stored in numbered memory locations
along with data. These instructions
control all aspects of the machine’s
operations. The same mechanisms are
used to read code and data.

 ˲ Each instruction within the pro-
gram specifies one of a set of atomic
operations made available to the pro-
grammer.

 ˲ The program’s instructions are
usually executed in a predetermined
sequence.

 ˲ However, a program can instruct
the computer to depart from this ordi-
nary sequence and jump to a different
point in the program.

 ˲ The address on which an instruc-
tion acts can change during the course
of the program’s execution.5

Von Neumann’s design melded fa-
cilities for arithmetic and control. It
contained both types of instruction,
similarly formatted. His arithmetic
circuits could be used to condition-
ally select numbers, while his storage
circuits could change destinations for
jump instructions as well as overwrit-
ing numeric data. This unification of
control and arithmetic operations was

44 COMMUNICATIONS OF THE ACM | JANUARY 2016 | VOL. 59 | NO. 1

viewpoints

text that people began calling the coded
instructions a “program,” a usage that
evolved from related but distinct mean-
ings of “program” and “programming”
within the ENIAC project.

This provides a rather different view
of the invention of computer program-
ming, and its relationship to logic,
from the widely held assumption that
computer development in the 1940s
was guided directly by the theoretical
work of Alan Turing. In that view of his-
tory, a metaphysical attraction to the
idea of “universality” inspired a com-
petition amongst computer builders to
be the first to check a box labeled “Tur-
ing complete.” Von Neumann’s design
for EDVAC was elegant and its general-
ization and simplification of ENIAC’s
control capabilities unquestionably
reflected his grounding in mathemati-
cal logic. The usefulness of a computer
able to tackle many different kinds of
calculations was certainly appreciated
by the creators of the first automatic
computing machines. The computer
builders of the 1940s and 1950s adopt-
ed EDVAC’s new design paradigms be-
cause they provided an efficient way to
automate real machines, running real
computations to solve real problems.

References
1. Bromley, A.G. Babbage’s analytical engine plans 28

and 28a—The programmer’s interface. IEEE Annals of
the History of Computing 22, 4 (2000), 5–19.

2. Eckert, J.P., Mauchly, J.W., Goldstine, H.H., and
Brainerd, J.G. Description of the ENIAC and
Comments on Electronic Digital Machines.
AMP Report 171.2R. Distributed by the Applied
Mathematics Panel, National Defense Research
Committee, (Nov. 30, 1945). Moore School of
Electrical Engineering, Philadelphia, PA, 1945.

3. Haigh, T., Priestley, M., and Rope, C. ENIAC in Action:
Making and Remaking the Modern Computer. The MIT
Press, Cambridge, MA, 2016.

4. Haigh, T., Priestley, M., and Rope, C. Los Alamos bets
on ENIAC: Nuclear Monte Carlo simulations, 1947-
1948. IEEE Annals of the History of Computing 36, 3
(July–Sept. 2014), 42–63.

5. Haigh, T., Priestley, M., and Rope, C. Reconsidering the
stored program concept. IEEE Annals of the History of
Computing 36, 1 (Jan.–Mar. 2014), 4–17.

6. Knuth, D.E. Von Neumann’s first computer program.
ACM Computing Surveys 2, 4 (Dec. 1970), 247–260.

7. Knuth, D. and Prado, L.T. The early development of
programming languages. In A History of Computing
in the Twentieth Century, N. Metropolis, J. Howlett,
and G.-C. Rota, Eds., Academic Press, New York, 1980,
197–273.

8. Nofre, D., Priestley, M., and Alberts, G. When
technology became language. Technology and Culture
55, 1 (Jan. 2014), 40–75.

Thomas Haigh (thaigh@computer.org) is an associate
professor of information studies at the University of
Wisconsin, Milwaukee, and chair of the SIGCIS group for
historians of computing.

Mark Priestley (m.priestley@gmail.com) is an
independent researcher into the history and philosophy of
computing.

Copyright held by authors.

1947 the noun “program” was becom-
ing firmly established to refer to coded
sequences of instructions.i

In the 1950s, “coding” acquired a
more specific meaning as the most me-
chanical part of programming—tasks
such as looking up numerical codes
corresponding to particular instruc-
tions. “Coder” endured in some orga-
nizations as a job title for the most ju-
nior programmers. In the last decade
or so it has been revived as an expres-
sion of geek pride, perhaps as a reac-
tion against the trend toward increas-
ingly abstract job titles for software
developers such as “software engineer”
or “solutions architect.”

New Meanings
Space does not permit us to follow the
further evolution of the concepts of pro-
gram and programming in any detail,
so instead we will flag a few key aspects
of the subsequent history. The first is
the distinction, sometimes made in the
late 1940s and 1950s, between a “stored
program” loaded into internal memory
and an “external” program wired onto
plug boards or read one instruction at a
time from tape.5

In the early 1950s, “automatic pro-
gramming” systems such as assem-
blers complicated the concept of pro-
gram. The program actually executed
by a computer, a string of numerical
codes, became something that could
be automatically generated from a dif-
ferent kind of input, commonly known
as “pseudocode.” This introduced two
levels at which a program could be
viewed, and the relationship between
the levels was widely understood as
one of translation.8

As the automatic programming sys-
tems became more complex, linguistic
metaphors continued to gain currency.
The FORTRAN system, released by IBM
in 1957, translated mathematical ex-
pressions, data structure definitions,
and control structures into executable
programs. FORTRAN is remembered
as the first widely used “high-level pro-
gramming language.” Donald Knuth
and Luis Trabb Prado explored the many

i For example, in S. Lubkin, “Proposed Pro-
gramming for the EDVAC” (January 1947), in
box eight of the collection “Moore School of
Electrical Engineering Office of the Director
Records, 1931–1948” in the University of Penn-
sylvania archives.

obscure and experimental systems that
led up to this milestone, concluding that
Konrad Zuse’s Plankalkül, a proposal for
which was published in 1948, was the
first public description of the concept of
a programming language.7

The increasing need through the
1950s to run programs on machines
of different types led to a search for a
“universal” programming language,
culminating in the publication of the
Algol proposals in 1958–1960. An Al-
gol program had no association with a
particular computer and, after Commu-
nications standardized on the language
for its “Algorithms” department, was
often intended primarily to be read by
humans rather than executed by ma-
chines. Nowadays usage has widened
to the point where the word “program”
can refer equally to the “source code”
written in a high-level language and the
“object code” into which it is translated
for execution on a particular machine.

Conclusion
Before the 1940s nobody talked about
programming computers and no com-
puters had what we consider to have
been the original and fundamental
meaning of programmability: the abil-
ity to automatically execute a specified
series of operations. While this sense
of programming could be applied to
machines able to execute a series of
coded arithmetic operations but not
able to automate complex control
structures, the fact is the earliest refer-
ences to “programming” appear in the
context of the first computer able to au-
tomatically execute nested loops and
conditional branches: ENIAC.

We see ENIAC’s control innovations
as pragmatic engineering responses
to the need for mechanisms that, un-
like paper tape or human intervention,
could keep up with its unprecedented
electronic speed of operation. Its design-
ers relied on problem-specific wiring to
route networks of “programming puls-
es” around the machine. In the “First
Draft” design for EDVAC, von Neumann
extended the coding approach of the
relay computers, designing a single in-
struction set that could express not only
sequences of arithmetic operations but
also the control structures pioneered on
ENIAC. The EDVAC code unified arith-
metic and control, programming a sin-
gle set of logical circuits. It is in this con-

