
Colossus and Programmability
Thomas Haigh, University of Wisconsin—Milwaukee & Siegen University

(thomas.haigh@gmail.com) and Mark Priestley, Independent Scholar (m.priestley@gmail.com)
This is a preprint. Please quote or cite the final published version, which is

Thomas Haigh & Mark Priestley, “Colossus and Programmability,” IEEE Annals of the History
of Computing 40:4 (Oct-Dec, 2018): 5-27

Abstract: We analyze the capabilities of the Colossus codebreaking devices, built in 1943-1945
under the direction of Tommy Flowers of the UK General Post Office. Colossus is often
described as a programmable computer, a misconception we trace to old battles about the “first
computer” and to former secrecy about its actual capabilities. In fact Colossus was not called a
computer at the time, and does not meet later definitions because it carried out no mathematical
operation other than counting. Colossus automatically executed a program, i.e. performed series
of discrete operations, but it was not programmable because that program could not be
fundamentally modified by its users. Instead of the old focus on allocating “firsts”, we argue for
new perspectives on Colossus focused on its use and impact, its relationship to other early
machines, and its place in the history of digital communications engineering.

The original Colossus was built by the British General Post Office at the end of 1943,
under the direction of telecommunications engineer Tommy Flowers, to assist in British attacks
on certain German codes. Although it was recently honored on a Royal Mail stamp as “world’s
first electronic digital computer,” its place within the history of computing remains ambiguous.
Colossus is also often said to have been a “programmable electronic computer,” again typically
in order to claim it as the first such computer. Despite its fame, accounts of what Colossus was
and what it could do are contradictory and no clear description of its control capabilities has been
published. This is in large part the result of residual secrecy that clung to Colossus during the
early 1980s when the nascent history of computing community hashed out the allocation of
“firsts” among early machines before moving on to more productive matters.

In this paper we present a clear and concise account of the architecture and control
capabilities of Colossus, grounded in primary sources declassified in recent decades. We are
particularly concerned with the concept of programmability, which has never been properly
defined in the history of computing literature. To establish broad and historically grounded
definitions of “program” and “programmability”, we looked at the contemporaneous emergence
of the idea of “programming” in the ENIAC project and at the everyday use of “program” in
other contexts. This led us to a sense of “program” as a series of operations carried out by a
computer, which is applicable to Colossus even though these operations were embodied in its
structure rather than being encoded symbolically as instructions. For this reason, the program of
operations executed by the machine could not be fundamentally changed by users. We argue that
it was not, therefore, programmable. We also challenge the idea of Colossus as a computer,
which we suggest has more to do with a need to justify its importance in the context the
discourse of the 1970s than with its actual capabilities. Despite making extensive use of digital
electronics Colossus fits neither 1940s definitions of the term nor more modern ones. Statements
made by Flowers himself, and some of those who worked with him, made more nuanced
characterizations, for example as an “electronic processor.”

mailto:thomas.haigh@gmail.com
mailto:thomas.haigh@gmail.com
mailto:m.priestley@gmail.com
mailto:m.priestley@gmail.com

Haigh & Priestley Colossus and Programmability – Preprint version 2

Our conclusion that Colossus was neither programmable nor a computer, reached rather
to our own surprise, does not diminishes its historical importance.1 Rather, the special pleading
previously undertaken to shoehorn Colossus into the role of programmable computer reflects the
concerns of the history of computing community in its early days, and indeed the limitations of
“history of computing” as an analytical frame. Colossus fits within that frame only to the extent
to which it was a computer. Today, as our reliance on digital communications grows and
computers vanish from view into digital devices and data centers we are better able to appreciate
this remarkable machine on its own terms.

Situating Colossus
Dozens of unique electronic and mechanical computers were built during the 1940s. A

handful, such as the Harvard Mark 1, ENIAC, EDSAC, and the UNIVAC 1, have clear and
prominent places in the history of computing. They consistently appear in overview histories,
such as Martin Campbell-Kelly and Willian Aspray’s Computer and Walter Isaacson’s The
Innovators, in television documentary series, and in comprehensive museum exhibitions such as
those at the Computer History Museum and the Heinz Nixdorf Museums Forum. Each is
remembered as the “first” machine to reach one or another historical milestone, agreed upon
after a long and messy battle to anoint the “first computer.”

The historical place of Colossus is less clear. Most other pioneering computers were
publicized during their operational lifetimes. ENIAC, for example, was announced to the world
with a front page story in the New York Times and installed in a showpiece facility where it was
frequently displayed for visitors.2 The Colossus machines were designed in secret, deployed as a
vital part of one of the war’s most militarily sensitive operations, and kept confidential for
decades afterwards. From the 1940s to the 1970s, as teams of lawyers gathered records
concerning other early machines and subjected their designers to repeated rounds of deposition
and testimony, those responsible for Colossus remained quiet about the machine’s capabilities
and even its existence.

Word of Colossus began to spread in the 1970s after Brian Randell, a computer scientist
with an interest in the early history of electronic computing, gathered testimony from veterans of
the project and persuaded the UK government to acknowledge its existence. In 1976 he shocked
the computer pioneers at a seminal computer history meeting at Los Alamos National Laboratory
with news that “a series of programmable electronic digital computers was built in Britain during
World War II, the first being operational in 1943.” He characterized Colossus as “a special-
purpose program-controlled electronic digital computer” that could “most aptly be compared” to
ENIAC in its flexibility and programming method.3

1 We previously endorsed the idea of Colossus as a digital electronic computer based on claims in the
secondary literature, but had not been able to form a very clear impression of what it actually did or how it was used.
Cf. Thomas Haigh, Mark Priestley, and Crispin Rope, ENIAC In Action: Making and Remaking the Modern
Computer (Cambridge, MA: MIT Press, 2016). Realizing this ignorance inspired the research described here.

2 Ibid.
3 A revised version was published in the seminal volume Brian Randell, "The Colossus", in A History of

Computing in the Twentieth Century, ed. N Metropolis, J Howlett, and Gian-Carlo Rota (New York: Academic
Press, 1980):47-92.

Haigh & Priestley Colossus and Programmability – Preprint version 3

Particularly in Britain, the high public profile of Colossus comes in large part from its
connection with the work of Bletchley Park, which has become one of the most celebrated facets
of the war effort. Colossus even makes a brief appearance in Cryptonomicon, Neal Stephenson’s
hugely popular novel of cryptography and the wartime origins of information technology. For
this reason, Colossus is more often considered as part of the history of codebreaking than of the
history of computing or of telecommunications. It was recently honored with a postage stamp
(figure 1).

Within the history of computing, Colossus is celebrated by a small community of
enthusiasts, some of whom view it as the most important of all the early computers. For example,
Jack Copeland has claimed that if the Colossus machines had been preserved as “the heart of a
scientific research facility” then “the Internet—and even the personal computer—might have
been developed a decade or more earlier.”4 Fans of Colossus, like those of other early computers,
sometimes strike a partisan tone.5 Copeland, for example, attributes to Flowers a remark that
“Colossus was ‘much more of a computer than ENIAC’” which was “just a ‘number cruncher.’”6
Tony Sale, who devoted his retirement to the construction of a new Colossus to replace those
disassembled at the end of the war, was motivated by a sense that “for far too long the
Americans have got away with the myth that the ENIAC was the first large-scale electronic
digital calculator in the world.” Following the completion of the reconstruction, he claimed,
“There has been a stunned silence from across the water.”7

Figure 1: The Colossus commemorative stamp, issued by the Royal Mail in 2015, calls it the
"world's first electronic digital computer."

It is far from clear that the silence noted by Sale is the result of stunned acquiescence to
his claims. Colossus has been marooned between the praise of boosters, who believe it to have a
singularly important place in the history of computing, and the scholarly authors of overview
histories of computing, who have politely ignored these claims. In Computer, Campbell-Kelly

4 B Jack Copeland, Turing: Pioneer of the Information Age (New York, NY: Oxford University Press,

2013), 119.
5 This is particularly noticeable with fans of computer pioneer John Atanasoff, such as Alice Burks, Who

Invented the Computer: The Legal Battle that Changed Computing (New York, NY: Prometheus Books, 2003).
6 Jack Copeland, "Colossus and the Rise of the Modern Computer", in Colossus: The Secrets of Bletchley

Park's Codebreaking Computers, ed. Jack Copeland (New York: Oxford University Press, 2006):101-115
7 Tony Sale, "The Colossus Rebuild Project", Codes and Ciphers, n.d., accessed July 4, 2018,

http://www.codesandciphers.org.uk/lorenz/rebuild.htm

Haigh & Priestley Colossus and Programmability – Preprint version 4

and Aspray note merely that Bletchley Park’s work on mechanical devices to attack the Enigma
code “was followed by an electronic machine, the Colossus, in 1943,” as a result of which
several people who would later work on computer projects were exposed to electronic
technologies.8 The other standard scholarly history of computing, Paul Ceruzzi’s A History of
Modern Computing doesn’t mention Colossus at all.9

The current situation, then, is one in which Colossus is largely ignored by historians
shaping broader narratives on the emergence of modern computing but lavishly, if sometimes
shrilly, praised by its fans and increasingly embraced by the British public as a symbol of
national greatness. This reflects an enduring vagueness about what Colossus actually did.
Randell dug up an impressive amount of information, but without access to original documents
his account was unavoidably speculative. Randell’s revelations led to considerable interest in
Tommy Flowers, who gave several public talks and interviews in the 1970s and published his
own technical article on Colossus and its history in 1983. Yet even Flowers was working from
memory, and his description turned out to have several significant historical and technical
inaccuracies.10 More recent investigations have provided masses of detail but not a clear and
concise overall description of the architecture and capabilities of Colossus separate from the
codebreaking applications for which it was designed, or of the methods by which it was prepared
for use.11 To bridge this gap we have gone back to the primary sources to clarify what Colossus
did and to probe its similarities and differences with early electronic computers.

Was Colossus a Computer?
There are two senses in which a historical object might be considered to be a computer.

One is if people at the time called it a computer, even if definitions have subsequently shifted.
That would apply, for example, to the human computers in Philadelphia calculating firing tables
for the US Army in 1942, or the analog torpedo computer used in submarine warfare.12
Historians call a term used in original sources an “actors’ category” and would typically look at
when people first started using it, and how its meanings were contested and changed over time.

8 Martin Campbell-Kelly and William Aspray, Computer: A History of the Information Machine (New

York, NY: Basic Books, 1996), 99-100. The more recent third edition retains the same text (p.82).
9 Paul E Ceruzzi, A History of Modern Computing (Cambridge, MA: MIT Press, 1998). Ceruzzi gives

Colossus about a page in his more recent Computing: A Concise History. He asks why Colossus is not “more
heralded,” and concludes that its focus on textual rather than numerical operations had combined with the long
prevalent secrecy to marginalize it.

10 Thomas H Flowers, "The Design of Colossus," Annals of the History of Computing 5, no. 3 (Jul-Sep
1983):239-252. For example, Flowers remembered the electronic buffer introduced on Colossus 2 as buffering the
outputs of five channels of simulated cipher wheel output, but later analysis showed that it buffered only one
channel. A detailed analysis of this episode can be found in James A. Reeds, Whitfield Diffie, and J V Field,
Breaking Teleprinter Ciphers at Bletchley Park. An Edition of General Report on Tunny With Emphasis on
Statistical Methods (1945) (Piscataway, NJ: IEEE Press/Wiley, 2015), 606-608.

11 Colossus has been explored in Jack Copeland, Colossus: The First Electronic Computer (New York:
Oxford University Press, 2006), Paul Gannon, Colossus: Bletchley Park's Greatest Secret (London, UK: Atlantic
Books, 2006), Harvey G Cragon, From Fish to Colossus (Dallas, Texas: Cragon Books, 2003) and Reeds, Diffie,
and Field, Breaking Teleprinter Ciphers.

12 David A Mindell, Between Human and Machine: Feedback, Control, and Computing Before Cybernetics
(Baltimore: Johns Hopkins University Press, 2002).

Haigh & Priestley Colossus and Programmability – Preprint version 5

The second sense in which we could interpret the term is to ask whether an object, though not
necessarily called a computer at the time, would meet a later definition of computer. For
example, Babbage’s analytical engine would, if constructed, have had comparable capabilities to
some of the computers of the 1940s. Historians refer to this a term used in this way as an
“analysts’ category.” This requires us to endorse a particular definition of the term, or formulate
a new one, and apply it consistently across time regardless of actual historical usage.

Colossus was not a computer in the first sense. Only many years after the Colossus
machines were shut down did anyone begin to call them computers or even calculators. This sets
Colossus apart from most of the pioneering electronic computers of the 1940s, which were
usually named either as computers (the “C” in ENIAC stood for “Computer” as did the “C” in
EDVAC) or calculators (the “C” in machines such as EDSAC and IBM’s SSEC). This is because
the new machines replaced the labor of humans, whose job title was “computers.”13 They were
often known as “automatic computers,” just as machinery that could direct the flying of a plane
was called the “automatic pilot” because it carried out some of the tasks of a human pilot.

Neither was Colossus a computer in the second sense, as it does not meet any plausible
subsequent definition of a computer. Computers carried out lengthy mathematical tasks, often
involving thousands of individual mathematical operations. This drew attention to their ability to
move from one operation to the next without human intervention. George Stibitz built a series of
pioneering tape-controlled computers at Bell Labs during the 1940s. His 1945 definition captures
the contemporary understanding of a computer as something able to perform automatically a
sequence of operations (“some or any of” multiplications, divisions, additions, and subtractions),
storing the intermediate results from earlier operations so they could be further manipulated by
later ones.14 More complex operations, such as square roots, logarithms, and trig functions, were
handled in some early machines with special hardware and in others by specifying the
appropriate sequence of elementary operations. Many of these machines were designed with

13 While we know of no evidence that Colossus was ever called a “computer” during the 1940s, some

British codebreakers were known as “Computor Clerks,” or sometimes simply as “computors.” According to
Michael Smith, “This curious title had nothing to do with electronic computers… but was an echo of an old War
Office covername for cryptanalysts – Signal Computor.” Michael Smith, The Secrets of Station X: How the
Bletchley Park Codebreakers Helped Win the War (Biteback Publishing, 2011). A 1940 memo noted that “The air
ministry has already instituted the use of the word ‘Computor’ in all cases in lieu of ‘cryptographer.’” (Illegible) to
Denniston, July 14, 1940, HW 14/6, TNA. Another document noted that secrets sometimes had to be discussed over
the telephone, and mandated substitutions which “bear no relation to the real nature of the intelligence.” It specified
“special computer” as a substitute for cryptographer, and “special computation” as a substitute for cryptography.
“Draft,” July 28, 1940, HW 14/6, TNA. This reminds us of other deliberately misleading wartime cover names, like
the “tank” in World War 1, or the “tube alloys” codename for British atomic research. However, a subtly different
pattern of usage occurred inside Bletchley Park itself, where such subterfuge was unnecessary. Later documents
suggest that itself the term was most commonly used for workers carrying out more routine tasks, particularly those
focused on counting and tallying operations. For example, within the Newmanry where Colossus was used, the term
“computer” was applied not to the male cryptographers who oversaw the attack but to the “Wrens who enter, flag,
and converge rectangles” (a laborious process of tabulating and adding data). Reeds, Diffie, and Field, Breaking
Teleprinter Ciphers, sections 31B & 71. Thus the term “computer,” while mandated for broad use outside Bletchley
Park, may have sometimes been used within its walls in a sense paralleling the scientific use of human, usually
female, “computers” discussed in David Alan Grier, When Computers Were Human (Princeton, NJ: Princeton
University Press, 2006). Given the prevalence of scientists and mathematicians in senior roles within this part of
Bletchley Park the adoption of this terminology is unsurprising.

14 Stibitz, 1945 AMP report “Relay Computers.” ML27-b3 in his papers at Dartmouth College. p.2

Haigh & Priestley Colossus and Programmability – Preprint version 6

table making in mind and made it easy to compute a result for one set of parameters after another
by constantly repeating the same processes.

Colossus, unlike these other machines, was not built to carry out numerical computations
and we know of no evidence that it was used to carry out calculations, or could have been
usefully applied to them.15 Flowers did not see Colossus as a computer and was never
particularly interested in computing, despite the popular misconception that he was keen to work
with computers after the war but was somehow thwarted. His career trajectory confirms that
electronic telephone exchanges, not computers, were his passion.16 Flowers eventually left the
Post Office when promised he could develop his exchange technology elsewhere – a
conspicuous contrast with his decision to remain there after work stalled on the ACE computer
he was supposed to be building for the National Physical Laboratory shortly after the war.17

Flowers himself was hesitant to call Colossus a computer. When, in 1977, he gave one of
his first public talks about Colossus, after news of the machine had begun to reach the public, he
related that “it is now said that during the Second World War I was responsible for the
production of the world’s first electronic digital computer,” yet cautioned that “if so, that was an
accident incidental to the solution of a problem.” 18 Flowers complained that telecommunications
companies had focused on using general-purpose computers to control the switches connecting
together telephone lines. He had spent his career urging that electronic “processors” be used to
replace electromagnetic switches, rather than control them, so that the “structure” of the
exchange would itself become electronic. Flowers noted that claims for Colossus as the first
computer came “to the surprise of those concerned who thought of it as just another processor”
or “a new-fangled processor,” seeing it as continuous with his work before and after the war on
electronic telephone exchanges.

Perceptions of what people did and why it mattered change over time, even in their own
minds. Flowers showed remarkable restraint in continuing to nuance his language decades after
others won him recognition as an inventor of the computer. The closest he came to claiming
Colossus as a computer seems to have been this 1983 passage: “Colossus had features now

15 Jack Good, a veteran of Colossus practice at Bletchley Park, later claimed that, if appropriately

configured, Colossus could almost have carried out a multiplication but that this would not have been possible in
practice because of constraints on what could be accomplished in a processing cycle. (We haven’t been able to
figure out what he had in mind, but then we aren’t as clever as him). This claim has been offered as proof of the
flexibility of Colossus, which in a sense it does attest to: a device designed without any attention to numerical
computations could almost, but not quite, have multiplied thanks to the flexibility with which logical conditions
could be combined. Yet it also proves the very real differences between Colossus and devices designed for scientific
computation. Multiplications were vital to computations, and a device that could not multiply would not, by the
standard of the 1940s, be termed a “computer “or “calculator.” See Irving John (Jack) Good, "From Hut 8 to the
Newmanry", in Colossus: The Secrets of Bletchley Park's Codebreaking Computers, ed. Jack Copeland (New York:
Oxford University Press, 2006):204-222.

16 Flowers’ career is examined Thomas Haigh, "Thomas Harold ("Tommy") Flowers: Designer of the
Colossus Codebreaking Machines," IEEE Annals of the History of Computing 40, no. 1 (January-March 2018):72-78

17 B Jack Copeland, ed., Alan Turing's Automatic Computing Engine: The Master Codebreaker's Stuggle to
Build the Modern Computer (New York: Oxford University Press, 2005)

18 Thomas H Flowers, Electronic Computers and Telephone Exchanges (NPL Report DNACS 24/80)
(Teddington, UK: National Physical Laboratory, 1980)

Haigh & Priestley Colossus and Programmability – Preprint version 7

associated with digital computers—semi-permanent and temporary data storage, arithmetic and
logic units including branching logic, and variable programming—that may justify its being
regarded as the first digital computer.” In the rest of that paper Flowers consistently calls
Colossus a “machine” rather than a “computer.”19

Flowers stuck with this position to the end of his life, even as he heard and saw others
claim Colossus as the first computer. Even his posthumously published chapter “Colossus”
opened with the sentence “Machines such as counters, computers, and Colossus process
information.” This positioned Colossus as related to both counters and computers, but not as
itself a computer. In the rest of the article he uses the word “machine” rather than “computer”
when talking about Colossus.20 In another posthumous publication, “D-Day at Bletchley Park,”
Flowers consistently used phrases such as “electronic machine” and “processor” to describe
Colossus and attributed to others the idea that Colossus was a computer:

[A]cademics interested in the history of computing have recognized that Colossus
was the world’s first electronic computer. It was not designed as a computer: computers
had not yet been invented. It resembled a modern computer about as much as George
Stephenson’s Rocket locomotive of 1829 resembled the Royal Scot and other steam
locomotives of the twentieth century. The basic technology used in a modern computer—
data storage and retrieval, ultrafast processing, variable programming, the printing out of
the results of the processing, and so forth—were [sic.] all anticipated by Colossus, some
of it by as much as ten years.21
Even here Flowers remains reluctant to call Colossus a computer or himself the inventor

of the computer, though he does, properly, claim credit for the development of many of the
digital electronic techniques later used to build computers.22

The Colossus Program
The term “program” can be treated either as an actors’ category or an analysts’ category.

We know of no evidence that the word “program” was applied during the mid-1940s to any part
of Colossus, or to anything it did. It was not an actor’s category at Bletchley Park or Dollis Hill,
though on the other side of the Atlantic the term was being adopted by members of the ENIAC
group at the University of Pennsylvania. So we use program here as an analysts’ category,
imposing our own definition. However we attempt to do this in a way that is sympathetic to
1940s usage, not just with regard to automatic computers but also in other areas.

19 Flowers, "The Design of Colossus", 252. His assertion that Colossus incorporated “branching logic” is

questionable, and the intended meaning of “variable programming” is unclear.
20 Thomas H Flowers, "Colossus", in Colossus: The Secrets of Bletchley Park's Codebreaking Computers,

ed. Jack Copeland (New York: Oxford University Press, 2006):91-100.
21 Thomas H Flowers, "D-Day at Bletchley Park", in Colossus: The Secrets of Bletchley Park's

Codebreaking Computers, ed. Jack Copeland (New York: Oxford University Press, 2006):78-83.
22 While we could find no article or talk by Flowers in which he directly calls Colossus a computer, Jack

Copeland has made prominent use of quotations from unpublished interviews in which Flowers appears less
ambivalent.

Haigh & Priestley Colossus and Programmability – Preprint version 8

To begin with a conclusion: Colossus did execute a program. We can describe that
program using a flow chart (Figure 4). Many years later, Harry Fensom, a senior member of the
team that designed Colossus, reconstructed from memory the series of human and automatic
actions it took to guide Colossus through a typical run. As he mentioned, “One panel of Colossus
contained the so-called ‘master control.’ This acted as a program sequencer, guiding the run
through all its steps, from switch-on, to print-out, and then on to the end of the run. Flowers
designed the routine, or program, carried out by the master control, using a timing diagram and
logic diagrams that had almost a modern flavour…”23

Before proceeding, we need so say a little bit about what Colossus did. It was designed to
attack the teleprinter encryption produced by a German device, known as the Lorenz SZ40 by the
Germans and codenamed “Tunny” by the British. This held twelve rotating code wheels, each
studded with a different number of configurable pins. With each new character of the message
some of the wheels turned to their next positions. The encryption process is shown in Figure 2.

Figure 2: Logical representation of the action of the Lorenz machine, dubbed “Tunny” by the
British. The gap of four characters shown between the chi and psi wheels is to symbolize the idea
of two logically independent transformations applied to a five channel bitstream, rather than a
representation of the actual inner working of the machine.

It was designed to dramatically speed one particular part of the code-breaking process,
shown on Figure 3 below as “chi wheel setting.” This was the most time-consuming of all the
tasks to accomplish with manual methods. Decrypting the message required knowledge of the bit
patterns set on each wheel and the position to which each wheel should be turned at the

23 Harry Fensom, "How Colossus Was Built and Operated -- One Of Its Engineers Reveals Its Secrets", in

Colossus: The Secrets of Bletchley Park's Codebreaking Computers, ed. Jack Copeland (New York: Oxford
University Press, 2006):297-306.

Haigh & Priestley Colossus and Programmability – Preprint version 9

beginning of the message. Unencrypted text is made of words and, as any Scrabble player
knows, the distribution of letters in natural language words is highly irregular. In a well
encrypted bitstream, however, all codes are equally likely. A simple statistical test on decrypted
text could easily identify the correct set of wheel start positions, assuming the pin settings were
already known. But someone who sat down to try decrypting every possible combination of start
positions for the twelve wheels would still be working when the war finished, and indeed when
the earth was swallowed up by the sun. Colossus was designed to exploit a subtle flaw in the
design of the Lorenz equipment used by the Germans. Because of this flaw, it was possible to
obtain statistical evidence of correct wheel settings by looking only at correspondences between
two of the chi wheels and two of the five bit channels that composed the intercepted message.
This method, devised by mathematician Bill Tutte, involved comparing the deltas (changes)
between successive bits generated by the code wheels and read from the intercepted message
tape. Setting the first two chi wheels involved 1,271 trial decryptions of the message with all
possible start positions. In the best case, two more runs (or in the case of the later versions of
Colossus, three runs carried out in parallel) would identify the start positions of the other three
wheels.24

Making thousands of complete trial decryptions for each message remained almost as
impractical for cryptographers without electronic assistance. With Colossus, however, they could
get the job done in less than an hour. The message was read again and again from a loop of paper
tape rotated at up to five thousand characters a second, while the machine automatically tallied
similarities between the deltas generated by the code wheels and read from the tape. Once the
message tape completed a revolution it reset the counters, incremented the start position of one
of the code wheels, and started again. To speed operation, Colossus used electronics to simulate
the revolution of the code wheels, rather than the physical cogs of the real Lorenz machine.

24 A variation on this description occurs somewhere in almost every one of the previous descriptions of

Colossus we have already cited. Our own attempt at a somewhat more complete description came in Thomas Haigh,
"Colossal Genius: Tutte, Flowers, and a Bad Imitation of Turing," Communications of the ACM 60, no. 1 (January
2017):29-35.

Haigh & Priestley Colossus and Programmability – Preprint version 10

Figure 3: The overall work flow needed to produce decrypted Tunny messages. This shows a
typical configuration as for late-1944, in which Colossus was to set and verify the start position
of chi wheels for each message and to initially “break” the same wheels by determining
appropriate bit patterns. Techniques were identified to use Colossus machines to the psi wheels
but because of the limited supply of machine time this was usually done manually.

Colossus switched between operations based on the interaction of its control circuits with
the contents of the message tape. A special code punched at the end of the message triggered
control signals to reset its counters and, if a predefined threshold had been reached, to print the
code wheel settings being evaluated and the counts obtained. Each message was followed by a
blank sequence in the tape, which gave Colossus time to increment the uniselectors holding the
code wheel settings currently being scored. These settings were then used to fix the positions of
the electronic code wheels, so that when the tape spun round again to the special character that
marked the beginning of the message, the machine was ready to evaluate the message against the
next possible combination of wheel settings.

Fensom documented thirteen manual actions to get the machine ready – loading a
message tape, configuring the plug board with the appropriate logical inputs, setting the wheel
start positions, and so on. These were followed by twenty automatic steps, its program, such as
resetting wheel positions, waiting for the message start signal, and comparing the counts to the
thresholds selected by the operator. The sequence included inner and outer loops. The inner loop
was followed each time a character was read from the message. The outer loop repeated each

Haigh & Priestley Colossus and Programmability – Preprint version 11

time the entire message had been read to reset the totals and increment the wheel start position.25
Building on Fensom’s description, modified by other sources and extended to include the
additional capabilities of the second and subsequent Colossus machine, we prepared the flow
chart below (figure 4) to visualize the program carried out by Colossus.

Figure 4: The program of operations performed by Colossus.

For the job we mentioned earlier, setting the first two chi wheels, Colossus would be
configured to generate the difference between two consecutive message bits on two of the five
channels of the tape and compare this to the signals coming from two simulated code wheels. In

25 Fensom described the first version of Colossus. One of the features added in second and subsequent

machines was the ability to set wheels to step either “fast” or “slow.” Reflecting this, our diagram breaks his outer
loop into middle and outer loops – once the fast stepping wheel (or wheels) had been tried in every possible start
position (middle loop) Colossus would increment the start position of the slow stepping wheel.

Haigh & Priestley Colossus and Programmability – Preprint version 12

that case, the inner loop would cycle each time the message tape finished, the middle loop would
increment the start position for one of the code wheels being tested, and the outer loop would
increment the position for the other code wheel. When both code wheels had returned to their
start positions a light would illuminate to tell the operators that the job was finished.

What Is a Program, Then?
How can we argue that Colossus was not a computer, but nevertheless carried out a

program? In discussion of computing these things are often treated as inseparable: something is a
computer because it can store and run a program, and a program is a series of instructions for a
computer. We are using a more general definition of program: a series of discrete operations
carried out over time. We should stress that Colossus did not store an encoded program in any
single part of its apparatus, or read it from a medium. Rather, its machinery embodied a single,
largely fixed program of operations. In this sense, a program is something enacted. Our
definition fits not just computer programs but also other common uses current in the 1940s. It is
also sympathetic to the original meaning of “program” in computing, which originated as a
simple extension of its everyday meaning.

To begin with the more general meanings of program, current in the 1940s and today. A
concert program, for example, specifies a sequence of musical works to be performed by an
orchestra on a particular evening. A television network programmer is responsible for choosing
and sequencing shows (also called “television programs”) to produce a schedule. A washing
machine fills with water, soaks, agitates, empties, rinses, and spins under the control of its
“programmer.” In each of these cases the program consists of actions to be performed in a
particular order. We believe that the application of the word to computers began as a simple
extension of this ordinary sense, and only later evolved into a distinct meaning of its own. This is
a contrast to some previous work on the topic, which has made rather more convoluted
arguments.26

The defining characteristic of the automatic computing machine was its ability to carry
out one mathematical operation after another without human intervention, which fit naturally
with the established idea of a program as a sequence of actions. The first groups attempting to
build automatic computers did not use the term program to describe these sequences, though it
would be entirely reasonable for a historian to apply the term as an analysts’ category. Charles
Babbage followed standard mathematical terminology in calling the discrete actions carried out
by his planned engine Analytical Engine “operations.” It would have been reasonable and
consistent with contemporary English for Babbage to say that his machine would carry out a
program of operations, though as far as we know he never used that phrase. Most of the first
generation of automatic computers, built during the early 1940s, relied on paper tape to control
their operation. The patterns punched onto the control tape of the Harvard Mark 1 computer,
built by IBM for Howard Aiken’s Computing Laboratory, were called “codes,” and its staff

26 David Alan Grier, "The ENIAC, the Verb "to program" and the Emergence of Digital Computers," IEEE

Annals of the History of Computing 18, no. 1 (January 1996):51-55 David Alan Grier, "Programming and Planning,"
IEEE Annals of the History of Computing 33, no. 1 (Jan-Mar 2011):86-88. We share Grier’s general sense that the
idea of “programming” was introduced to computing in the ENIAC project, but are not convinced by his suggestions
adoption of the term reflected a desire to “establish the economic importance of automatic computing” or that the
alternative term “planning” reflected a specific commitment to Taylorist conceptions of production engineering.

Haigh & Priestley Colossus and Programmability – Preprint version 13

talked about “coding” rather than programming. The word “sequence” was often used to describe
the content of a particular strip of paper tape, usually a subroutine. The ability to automatically
perform sequences of operations was central to the new machines, something recognized in the
titles IBM gave to this machine (the Automatic Sequence Controlled Calculator) and to its more
ambitious successor (the Selective Sequence Electronic Calculator). A phrase like “Program
Controlled Calculator” would have also fit with contemporary usage.

The earliest application of the idea of a program to an automatic computer was to
describe the control mechanisms of ENIAC. ENIAC used vacuum tubes rather than
electromechanical relays for its arithmetic and memory circuits. These could switch thousands of
times faster than the relays used in earlier computers. To exploit this speed its designers fully
automated its control. Rather than read control sequences from tape, its operations were
sequenced by a network of wires carrying “program pulses” between different parts of the
machine. Their arrival of a pulse at a particular input terminal triggered whatever action had
previously been set using the unit’s control switches and knobs. These controls “programmed”
the operations carried out by that unit’s circuits. As well as discussing “program pulses,” a June
1944 progress report described two ENIAC accumulator units as being “automatically
programmed to receive the multiplier and multiplicand” when a program pulse triggered the
multiplier unit to which they were attached. ENIAC’s most complex unit, the “master
programmer” controlled the overall computation, counting off loops and branching between
different sequences when it was time to move on to a new task.

Interestingly, the terms “programming” and “program” were not originally used to
describe ENIAC’s closest analogs to their modern senses: the act of configuring the machine to
carry out a particular problem and the resulting configuration of wires and switches. Instead
these were called, respectively, “setting up” ENIAC and a “set-up.” By late 1945, however, the
ENIAC team was beginning to use “programming” in something much closer to its modern
meaning. The new meaning of program seems to have been connected to the new approach to
automatic control formulated for EDVAC, the follow-on to ENIAC commissioned in the
summer of 1944. John von Neumann’s celebrated “First Draft of a Report on the EDVAC,”
circulated within the ENIAC team in April 1945, combined the established approach of
controlling a computation by reading a sequence of coded instructions with the novel idea of
storing these instructions in a large, addressable memory using the same mechanisms employed
to store and manipulate data.

Von Neumann himself followed the Harvard group by calling these instructions “code”
and the process of producing them “coding,” but others adapted the Moore School’s existing
vocabulary of “programming” to the new approach, altering its meaning in the process. A letter
from one of the project’s leaders noted that “the EDVAC will contain a large number of units
capable of remembering programming instructions,” to be copied from tape “before the actual
program is started.”27 Similar terminology was soon applied to ENIAC: a report described the
practices used in “planning a set-up for the ENIAC” as “programming techniques.”28 Rather than

27 H. Goldstine to H. Curry, 3 October 1945, in the collection “ENIAC Patent Trial Collection” in the

University of Pennsylvania archives.
28 J Persper Eckert et al., Description of the ENIAC and Comments on Electronic Digital Machines. AMP

Report 171.2R. Distributed by the Applied Mathematics Panel, National Defense Research Committee, November
30 (Philadelphia, PA: Moore School of Electrical Engineering, 1945).

Haigh & Priestley Colossus and Programmability – Preprint version 14

describe the action of the control circuits responsible for triggering operations at the correct time,
the verb “to program” now referenced the work of the humans devising sequences of operations.

Since then the idea of a program in computing has continued to develop a specialized set
of meanings, particularly in the discourse around the so-called “stored program concept.”29 Here
we are using it in its more general sense. Even this broader sense is useful in distinguishing the
capabilities of Colossus from those of other contemporary machines which did not sequence
distinct operations over time. For example, in analog computers, such as differential analyzers,
each part of the machine carried out the same operation throughout the course of the
computation. There was no sense in which the machine executed a program of operations, or in
which one part of the machine was “programming” another to stop what it was doing and to start
something different.

Defining Programmability
The history of computing community has generally observed a distinction between

“general purpose” computers that can be reprogrammed by their users to do different kinds of
tasks and “special purpose” computers executing a “fixed program.” This distinction was already
commonplace within the computing field by the 1950s. Early special purpose computers were
built for tasks such as missile guidance or toll collection.

Colossus is, to our knowledge, unique in being widely characterized as both “special
purpose” and “programmable,” a startling formulation derived from Randell’s early work. He
called Colossus both “programmable” and “program controlled,” apparently interchangeably, but
also described it as “special-purpose.” The legacy of this characterization endures, for example,
on the Wikipedia page for Colossus which describes it as a “special-purpose electronic digital
programmable computer.” In his history of the relationship between computers and
cryptography, Paul Gannon reshuffled the adjectives slightly: “Colossus can be defined as an,
(sic.) electronic, binary/logic-processing, programmable, specific-purpose machine.”30 Yet to the
best of our knowledge, neither Randell nor any other scholar has attempted to define specifically
what “programmable” means as a historical term, or exactly what degree of configurability
would qualify a device like Colossus as programmable but not as general purpose.31

29 The “stored program concept” has recently been examined at length in Thomas Haigh, Mark Priestley,

and Crispin Rope, "Reconsidering the Stored Program Concept," IEEE Annals of the History of Computing 36, no. 1
(Jan-Mar 2014):4-17, Haigh, Priestley, and Rope, ENIAC In Action: Making and Remaking the Modern Computer
and Doron Swade, "Inventing the User: EDSAC in Context," The Computer Journal 54, no. 1 (2011):143-147.

30 Gannon, Colossus, 435.
31 Randell points out to us that he had, however, tried previously to rigorously define programs and

programmability in his non-historical work with J.J. Horning on computational processes, in dialog with Dijkstra’s
contemporaneous work on structured programming. They describe a “general-purpose computer” as “a processor
with the outstanding characteristic that program instructions, as well as program status, are represented by values of
its (changeable) state variables.” They then introduce “the term programmable processor to describe an interpreter
with the property that some significant variables of the underlying process are instruction variables, and are not
observable at the higher level.” It is not obvious how to map the concepts of instructions or variables onto the
capabilities of Colossus. A program is defined by reference to programmability: “Given a programmable processor,
it becomes convenient to define a process by means of a program. A program for a particular processor is a set of
initial values for its program status and instruction variables.” J J Horning and Brian Randell, "Process Structuring,"
ACM Computing Surveys 5, no. 1 (1973):5-30.

Haigh & Priestley Colossus and Programmability – Preprint version 15

We may gain clue from a parallel discussion underway in the mid-1970s. By the 1960s as
anything described as a computer was understood to be programmable, and hence people usually
just talked about computers rather than “programmable computers.” The word “programmable”
gained new currency in the 1970s following the introduction of powerful electronic calculators,
where users could specify and store sequences of operations to be carried out automatically.
Were these computers? The concept of a “programmable calculator” was introduced to describe
a class of portable, personal machines that could be programmed by their users but that was more
limited than true computers.32 For example, according to a 1976 report “Calculators and the
Computer Science Curriculum” cheaper calculators were not “programmable by the user” even
though “they do contain stored programs and can execute these programs” for example when a
user pushes the square root button. Thus “there seems to be a clear difference between these
calculators and what most computer scientists commonly think of as computers.” In contrast,
“programmable calculators” had “sufficient memory to store a series of key strokes (that is, a
sequence of machine language instructions) and then to execute the program.” In a revealing nod
to computer history the author continued, “at the higher price levels (but well under $1,000) such
machines approach the ENIAC in capability, and will soon exceed it.”33 That was the same year
in which Randell originally described Colossus as “programmable,” and it seems reasonable to
suppose that he had this discourse in mind when invoking the idea that a machine without the
full capabilities of a general purpose computer could still be programmable. (At the time Randell
was writing the documents that would have made clear whether Colossus actually had
capabilities similar to a programmable calculator were still classified).

Having failed to find a useful and relevant definition of “programmable” in the existing
literature, we will instead attempt to create our own. Our definition of a program as a series of
operations carried out over time helps us separate the concepts of program and programmability.
Whereas “program” has a long history in many different contexts, “programmable” appeared
only after the spread of the electronic computer and can thus be applied to Colossus only as an
analysts’ category. The Oxford English Dictionary shows no usage prior to 1953, in which year it
documents the appearance of two distinct but related meanings: “Capable of being scheduled in
accordance with a programme of events” and “Of an apparatus, operation, etc.: capable of being
programmed.” Our definition of programmable is fairly similar. A program is a sequence of
operations performed over time. Programming is the act of specifying those actions, and a device
is programmable to the extent that its users can program it.

The simplicity of that definition conceals an important point: invoking the action of users
means that a device will be programmable under some circumstances but not others. Any device
that performs a program was designed and built by a group of people. Those same people could
have chosen to design the machine to perform a different program, and with sufficient resources
and motivation could presumably have taken it apart and rebuild it to do something different. For
example, the claim of programmability is at the heart of the case traditionally made for the
importance of Colossus to the history of computing, distinguishing it from the slightly earlier
“Atanasoff Berry Computer.” The ABC was likewise driven by the rotation of a physical

32 This was more of a practical and marketing distinction than a theoretical one, as some programmable

calculators had Turing complete programming languages.
33 David Moursund, "Calculators and the Computer Science Curriculumn," ACM SIGCSE Bulletin 8, no. 2

(1976):21-23.

Haigh & Priestley Colossus and Programmability – Preprint version 16

medium, in this case a rotating capacitor drum memory rather than the paper tape used with
Colossus. It carried out a sequence of mathematical operations, performing some steps on a
conditional basis depending on the results obtained. ABC and Colossus have traditionally both
been granted “firsts” as follows: the ABC was a special purpose fixed program digital electronic
computer whereas Colossus, built a few years later, was also an electronic digital computer but
was in addition programmable.

The ABC is a famous example of a fixed program machine. Its design embodied a single
program, which could not be fundamentally changed except by redesigning and rebuilding it.
That had the advantage, for its intended users, that the steps needed to solve systems of linear
algebraic equations were built into the machine and did not need to be specified. In contrast
ENIAC, a general-purpose computer, had no built-in program. When used as originally intended,
and documented in its instruction manual, users had to go through a long and elaborate process
of deciding on the appropriate series of operations and figuring out the appropriate network of
wires and switch settings to trigger those operations. Its program changed entirely from one job
to another.

Later computers, modelled after the 1945 design for the EDVAC, essentially combined
these approaches by adopting what we have called the “modern code paradigm.”34 On the most
fundamental level they ran a single fixed program, like the ABC. But this program was, to
borrow a term that became popular a little later, an interpreter. It fetched, decoded, and executed
instructions held as data in an addressable memory. That meant that, like ENIAC, the computers
could carry out whatever series of operations their users specified.35 As we have described
elsewhere, in 1948 ENIAC itself was reconfigured for this new programming paradigm, with a
fixed program wired on its controls and user programs coded as numerical sequences on its
function tables. Later systems added further levels of fixed programs underling the changeable
program – microcode, operating systems, interpreters, BIOS code, and so on. But as long as their
users can specify some new programs we would consider those aspects of the system
programmable.

A device that is programmable by one users with one tools, will not necessarily be
programmable by other users with other tools. For example, when the iPhone was first released
its operating system was deliberately locked down to prevent the creation or installation of any
programs other than those Apple had created for it. For users outside Apple’s own development
teams it was not programmable. Some users wrote new code to replace parts of the standard
operating system to “jailbrake” it, allowing the installation of other programs. Soon Apple itself
created its “App Store” and tools to allow users outside the company to create their own
programs for the iPhone, which quickly became a crucial feature. Most users still do not create or
modify its programs, but the machine is programmable for those with the skills, motivation, and
tools to do so.

We should also distinguish between creating programs and choosing between pre-
existing programs. For example, by our definition a player piano follows a program when it

34 Haigh, Priestley, and Rope, "Reconsidering the Stored Program Concept".
35 At this level of abstraction, one might depict Turing’s “universal machine” as doing something similar,

as it could carry out the same work as any other machine without requiring modification to its control table if
provided with the appropriate sequence of symbols on tape.

Haigh & Priestley Colossus and Programmability – Preprint version 17

plays notes from a music roll. If its user had a machine able to punch notes onto a blank roll it
would be programmable. Most users did not. They could select between programs by changing
rolls, but not alter them. Likewise, Atari’s 1970s home videogame console, the VCS, was a
simple unit that ran code from ROM cartridges. Ordinary users purchased, selected, and ran
programs but did not create them. For someone with the appropriate development system and the
ability to burn programs to ROM the VCS was programmable.

Other systems provided the ability to choose between built-in programs, but unlike the
player piano or the Atari VCS were not designed to let users swap in additional programs. An
example is the washing machine. As we mentioned above, an automatic washing machine
incorporates a “programming unit” to control the sequence of operations it carries out. Washing
machine users choose between several different programs by turning a control dial (figure 5) to
the desired starting point, and can also push buttons to set parameters, such as “light load,” that
modify the washing operations. Yet it would seem very unusual to talk about “programming” a
washing machine.36 The conventional term is that a user “selects” a program cycle. Likewise, in
the computing context one would not usually call the act of choosing a predefined program and
triggering its execution “programming.”37

36 Google currently finds 94 uses of the exact phrase “programmable washing machine” which suggests

that it is rarely used.
37 Such a usage might resonate with the original 1944 ENIAC sense of programming, in which directing the

operation of a piece of machine was programming it, but the concept of “programmability” appeared only after our
modern sense of a computer program was well established. Thus the idea of “programmability” has historically been
applied only to a specific, narrower and later sense of “program” and, as the OED suggests, means that a user can set
up a schedule of events.

Haigh & Priestley Colossus and Programmability – Preprint version 18

Figure 5: On this typical washing machine dial, users select one of three predefined programs,
such as the normal program, which runs as follows: hot, warm, cold, rinse, spin, off. Users can
also skip to a particular point within each program, for example starting the normal wash
program at the beginning for heavily soiled clothes or omitting the hot wash operation for
regular soilage.

We conclude that the concept of “programmability” as applied to a device requires not
only that the device carries out a sequence of distinct operations over time, i.e. that it follows a
program, but also that it allows a given user to define new sequences of operations. We see
programmability as a relational rather than absolute property. One user with one tool will be able
to program aspects of the machine’s behavior that other users, with other tools, cannot program.
So in asking whether Colossus was programmable, we must be a little more specific. We suggest
that the definition of programmability should be inclusive, to define a machine as programmable
if any actual group of users with any set of existing tools could program its overall behavior,
excluding only the special case of engineers rebuilding it. If the cryptanalysts and operators at
Bletchley Park were able to set up Colossus to carry out new sequences of operations then
Colossus was programmable. If changing the program carried out by Colossus (and diagrammed
by us as figure 4 above) would have required calling Flowers and his team to take it apart then
Colossus was not programmable. As in the case of the washing machine and the ABC, allowing
users to select between pre-defined sequences of actions, skip steps, or apply parameters to alter
the behavior of particular steps does not constitute programmability. On the other hand, because
we have a broad sense of program our definition of programmability is not encumbered with
requirements for Turing completeness, conditional branching, and so on. By our definition a
player piano is programmable by someone with a tape punching machine, and so were relay
computers like the Harvard Mark I.

Haigh & Priestley Colossus and Programmability – Preprint version 19

Parts and Controls of Colossus
To characterize Colossus as “programmable”, then, is to suggest not only that it followed

a program but also that users could fundamentally change the program of operations it performed
without rebuilding its hardware. Colossus was indeed highly configurable, so that its users
applied it to many different tasks – a tribute to the foresight of Flowers’ team and its close liaison
with Newman and his group at Bletchley Park. But did these configuration capabilities change
the program itself, or just set parameters for a fixed program? To answer those questions, we
must retreat temporarily from historiography to materiality, to talk a little bit about what
Colossus did and the extent to which its program could be changed by expert users.

Figure 6: The reconstructed Colossus 2 at the National Museum of Computing. By TedColes -
Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=38648141.

Thanks to the declassification of archival records and the work done by Tony Sale and
his team in rebuilding a Colossus at the UK’s National Museum of Computing (figure 6) we are
now able to document exactly what it could and could not do. The overall structure of the
machines and details of electronics and circuitry are not well described in the surviving primary
sources available to us, and here we have relied on the work of rebuild team. Their depictions in
the earlier secondary literature are not always accurate. The detailed functionality and intended
use of most of the machines’ controls, however, are described in the 1945 “General Report on
Tunny” particularly in Chapter 53.38 We have also made use of the substantial number of
printouts from Colossus runs reproduced in that report and others dating from 1945; these have
enabled us to confirm many details of the machines’ functionality independently of the
reconstruction. In combination, these sources allow a more complete and accurate description of
the functionality and use of the machines than might be expected given the secrecy that

38 This report was recently published as Reeds, Diffie, and Field, Breaking Teleprinter Ciphers.

https://commons.wikimedia.org/w/index.php?curid=38648141
https://commons.wikimedia.org/w/index.php?curid=38648141

Haigh & Priestley Colossus and Programmability – Preprint version 20

surrounded them. We present a summary of these findings here, but readers who want more
detail on the analysis and behind them should read our full technical report.39

Figure 7: Physical layout of Colossus, showing its main user-configurable controls.

Many of the racks (figure 7) combined several distinct functions, so we find it useful to
conceptualize Colossus as being composed of three main subunits (figure 8). Its forerunner,
Heath Robinson, was literally designed and manufactured in three separate parts, interconnected
for the first time at Bletchley Park. These were the tape unit, the combining unit, and the counter.
Colossus followed the same pattern, though the subunits were less physically distinct.

39 The report has the working title “Colossus Configuration and Capabilities” [update: now “Colossus: The

Missing Manual”] and is expected to appear in the Media of Cooperation working paper series of Siegen University
during 2019.

Haigh & Priestley Colossus and Programmability – Preprint version 21

Figure 8: Logical architecture of Colossus, broken down into its three main function units
and showing data and control flows between them as well as the main configurable settings
available to control them.

The reading and generating unit consisted of a tape drive (often used to mount encrypted
text) and a set of twelve electronic ring counters that simulated physical code wheels in the
Lorenz cipher machines used by the Germans. Physically, this functional unit included
“bedstead” tape equipment and reader, and lots of electronics for the simulated wheels in racks
W, M, and R at the back of the machine. For convenience, most of the controls for these circuits
were mounted on the front of Colossus on the S rack and included:

• “Setting jacks” to set the initial wheel start positions;
• Stepping controls, to govern the stepping of these initial positions each time the message

was restarted;

Haigh & Priestley Colossus and Programmability – Preprint version 22

• Pins to set the bit patterns on the simulated wheels (known as “triggers”);
• “Multiple testing” controls to determine which code wheel’s output was buffered so that

up to five consecutive wheel positions could be evaluated simultaneously; and
• Span controls, used to count only part of the input tape when producing totals.

The combining unit combined selected channels from the various tape and wheel
bitstreams. The results were further combined by using them as inputs to use-configurable
networks of logic gates. The equipment for these functions centered on a plugboard in Rack J
and a large switch panel in Rack Q (the “Q Panel”), both used to define the logical tests applied
to inputs and specify the counters to which the results should be sent. User-configurable controls
included:

• “Q selection switches” to determine which of the many possible inputs were routed
onwards to the Q panel and whether to supply it with raw values or “deltas” between
successive bits;

• Wires set on the plug board (“jack field”) to run selected inputs through particular
combinations of logic gates and route them to particular counters; and

• Keys set on the Q panel to run selected inputs through particular combinations of logic
gates.
The counting unit included the electronically controlled typewriter used for printing and,

in the C Rack, the electronics that drove it and buffered output so that Colossus could continue to
work while the results of the previous set of counts were output. Only one aspect of this was
configurable:

• Rotary switches to set the threshold above which the contents of a counter, and
corresponding initial wheel positions, should be printed.

What Could the Controls Configure
These various controls did give Colossus considerable flexibility. It was designed with

wheel setting in mind but codebreakers found many other ways to use Colossus for different
parts of the coding job. For example, one way to determine whether decryption settings were
correct was to count the number of times each letter appeared in a message. Colossus could be
set to look only at the characters on the tape (ignoring the simulated cipher wheels entirely) and
to count the frequency with which they appeared. A run of that kind would finish after a single
pass through the inner loop in our flow diagram, having immediately met the termination
conditions for the middle and outer loops. In our technical report we discuss several common
Colossus configurations and exactly how the machine would be set up for each.

Those describing Colossus as programmable have generally rested their case on the
combining unit controls. For example, according to Benjamin Wells “tightly refined
codebreaking algorithms were implemented in plug-wiring and switches. But the crucial story is
that the same machine supported many different algorithms via flexible programming.”40

40 Benjamin Wells, "The PC-User's Guide to Colossus", in Colossus: The Secrets of Bletchley Park's

Codebreaking Computers, ed. Jack Copeland (New York: Oxford University Press, 2006):116-140.

Haigh & Priestley Colossus and Programmability – Preprint version 23

We will therefore describe these controls in a little more detail. Plugboard cables and, on
later models, switches were used to select inputs and run them through logic gates to generate
pulses for the counters. Users had a great deal of flexibility in configuring its circuits to run
inputs from the message tape and electronic code wheels though different logic gates to combine
them in different ways for different purposes. Signals from the electronic simulated code wheels
and the message tape were available as inputs. The message tape appeared as five separate binary
channels, as did each of the two main sets of code wheels. The Colossus machines also provided
inputs representing the differences between two consecutive character positions and, in later
models, five consecutive positions of one of the electronic code wheels (the “R stream” on our
diagram). The results of these logical combinations could be fed into different electronic
counters, the contents of which would be printed or not printed after the message was fully read
according to thresholds set by the user. After each reading of the message tape the initial code
wheel settings would be stepped to a different combination according to switches configured by
the user.

Operators plugged wires or set switches to combine these inputs. This let them specify up
to five truth tables, making particular logical connections between the input pulses and the output
fed to each counter. Colossus included circuits to implement a variety of Boolean logic
operations, including XOR and NOT. By running pulses through several of these circuits other
logical conditions could be specified.41

The network of logic gates configured on Colossus’s combining unit by its user had the
effect of implementing up to five logical truth tables, each table specifying which combinations
of inputs should trigger an output pulse for a counter. The logic circuits then reset, and processed
the next combination of inputs. This was analogous to the function of a traditional tabulating
machine, in that both processed a stream of records (characters from paper tape for Colossus,
punched cards for the tabulating machine) and incremented the appropriate counter whenever the
input data satisfied a specified condition. Colossus allowed for rather more complex logical
conditions than traditional tabulating machines, but it similarly transformed and counted streams
of input data. The only conditional action that Colossus users could specify via the logic circuits
of the combining unit was to either increment or not increment each counter in response to a
particular combination of input received from the tape and code wheels. Data pulses output from
the combining unit were routed only to counters, and the contents of the counters went only to
the printer.

Computer scientists use automata theory to distinguish between the fundamental
capabilities of different kinds of automatic devices. The most advanced, including programmable
computers from ENIAC onward, are equated with Turing Machines. Push down automata are
less powerful than Turing machines, and finite state automata are less powerful than push down
automata. As their name suggests, even finite state automata preserve state information from
each time step to the next. In contrast, the “combining unit” of Colossus did not preserve state
information. The technical term for this kind of system is “combinational logic”42 (which is

41 Reeds, Diffie, and Field, Breaking Teleprinter Ciphers, 323.
42 Gerard A Maley and John Earle, The Logic Design of Transistor Digital Computers (Englewood Cliffs,

NJ: Prentice Hall, 1963).

Haigh & Priestley Colossus and Programmability – Preprint version 24

echoed in the term “combining unit” applied by Flowers and his team to the corresponding part
of Heath Robinson) or “time-independent logic.”43

The logic performed one complex step repeatedly, but did not sequence operations or
maintain any state information from one input character to the next. Counter totals were retained
from one character of the tape to the next, and the uniselectors held current wheel start positions
from one entire cycle of the tape to the next. In an abstract sense both held state information, and
thus constituted a kind of memory, but this data could not be fed into the combining unit as
inputs. Counter values were not available as inputs for the configurable logic in the combining
unit, eliminating the possibility of using counters as control flags. We do not believe that the
ability to reconfigure combinational logic to implement an arbitrary truth table is evidence of
“programmability” because it does not truly change the sequence of operations performed by the
machine. It merely provides a logic expression evaluated in one of those steps.

It has sometimes been claimed that Colossus possessed the capability for conditional
branching. Colossus certainly included circuits that would trigger an action only under particular
conditions – for example resetting the machine when the end of message code was read from the
tape but not when ordinary data was read. During the reset process at the end of each loop of the
message tape, dedicated circuits would compare the counter values against a user selected
threshold to determine whether the results of that cycle should be printed. If that was
“conditional branching” then so is any control circuit, even an adder that carries digits from one
position to the next, or a thermostat that turns on a heater once the temperature falls below a
user-specified level.

Colossus was not programmable, according to our definition, because the basic sequence
of operations performed, the program, could not be changed by the users. That judgement
involves answering a difficult question: what kinds of modification to the program executed by a
machine are sufficient to make that machine “programmable” as opposed to “configurable”?
What is a new program and what is just a parameter? We have shown that the Colossus controls
could not alter the basic sequence of operations shown in our flow diagram, though with certain
switch settings some steps would be skipped. To us, that kind of configuration seems more like
setting a parameter than defining a new program.

That actual programming capabilities of Colossus turn out to be much more limited than
those claimed by its boosters. We stridently dispute the suggestion of S. Barry Cooper that
Colossus “may well be Turing complete” (i.e. could handle any problem solvable by any
computer if given sufficient time and storage space).44 Wells’ claim that different “algorithms”
could be set up is similarly misleading. An algorithm expresses a computational procedure as a
step-by-step series of operations carried out over time. Colossus could carry out only one
algorithm. Fensom characterized it as carrying a program designed by Flowers, rather than
running many different programs written by its users.45 We think he was right.

43 C J Savant, Martin S Roden, and Gordon Lee Carpenter, Electronic Design: Circuits and Systems

(Benjamin/Cummings, 1991).
44 S Barry Cooper, "The Machine as Data: A Computational View of Emergence and Definability,"

Synthese 192, no. 7 (July 2015):1955–1988.
45 Flowers himself, in 1983, described Colossus as following a “master control program” which was fixed

by the control unit rather than defined by the operator. However, he then muddied this distinction by calling

Haigh & Priestley Colossus and Programmability – Preprint version 25

Was Colossus Binary?
Having described the architecture of Colossus we can clarify a final point. Colossus is

often described in the secondary literature as a binary machine, sometimes with the implication
that this made it closer to modern computers, and hence more advanced, than computers using
decimal number representations. Paul Gannon made this explicit: because the “modern computer
can be defined as an electronic, binary/logic-processing, conditional-programming, stored-
program-control, general-purpose machine” and Colossus, unlike ENIAC, was also a
“binary/logic-processing, programmable” machine “Colossus was closer to the modern concept
of the computer than ENIAC was in some significant ways.”46 Echoing this, in The Innovators,
Walter Isaacson noted that “well before ENIAC… the British code breakers had built a fully
electronic and digital (indeed binary) computer.” ENIAC, in contrast, “was not like a modern
computer” to the extent that it used a decimal system.47

In popular discourse of this kind, binary is often associated with the idea of representing
information as a series of electrical pulses, conceptualized as 0s and 1s. Colossus certainly did
that – its users spoke of “impulses,” which they represented with the “dots” and “crosses”
terminology of teleprinter engineers rather than the 1 and 0 of abstract logic. But all digital
electronic machines transmit pulses, whether they use binary or not. ENIAC, for example,
transmitted the decimal digit four as four pulses.

“Decimal” and “binary” properly refer to the number bases used by computers when
representing and manipulating numbers: 10 for decimal and 2 for binary. The difference between
binary and decimal computers came in three main areas: the format used to store numbers in
memory, the format used to transmit them, and the design of the arithmetic circuits used to
manipulate them. It is hard to define Colossus as either binary or decimal, because most of the
electronic pulses manipulated by Colossus did not represent numbers. It had no hardware to
interpret input patterns as binary numbers, or to carry out any arithmetic other than incrementing
a counter. A computer reading a five-channel paper tape would interpret the five channels as a
five-digit binary number, assigning a different value to a 1 depending on its position. For
example, 10011 might be interpreted by its hardware as the number 19. In contrast, Colossus
treated the five channels as synchronized but independent bitstreams. It performed logical
transformations, rather than arithmetic, on the data it read.

Three parts of Colossus counted, each in a different way but none used a binary
representation. 1) The units that emulated the encoding wheels of the Lorenz machines were a set
of electronic ring counters of different lengths (and thus neither binary nor decimal). 2) The
electronic counters tallied pulses output from the combining unit. These used decimal arithmetic,
but stored each digit as a bit pattern using a biquinary representation. 3) The electromechanical

Colossus configurations set up with jacks and switches “programs” and the person configuring Colossus a
“cryptanalyst-programmer.”

46 Gannon, Colossus, circa 435.
47 Walter Isaacson, The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital

Revolution (New York: Simon and Schuster, 2014), 75 & 79. This connection of binary arithmetic with progress is
rather dubious. Decimal arithmetic has some advantages for floating point and remained a feature of many later
computer architectures.

Haigh & Priestley Colossus and Programmability – Preprint version 26

uniselectors that held the current start positions for the code wheels were decimal counters,
advancing with each cycle of the message tape.48

Conclusions: Colossus and the Early Digital
Computers were far more visible than other forms of digital electronics during the 1970s

and 1980s, and inventing the computer a much more visible honor than inventing the digital
signal processor. For decades, from the late-1940s to the 1990s, specialists and the public shared
a fairly clear sense of what “the computer” was. It consisted of a box holding a processor and
memory, to which were connected storage devices such as disks and tapes, and input and output
devices such as keyboards and printers. Over time the boxes shrank and got cheaper, and they
spread from data processing centers into schools, offices, and homes. Making a case for the
historical importance of Colossus meant shoehorning it into this tradition, as Brian Randell did
when he won it a prominent place at the seminal 1976 Los Alamos meeting where the early
agenda for the history of computing field was set.

Early computing innovation is still often discussed from the viewpoint of logic, stressing
mathematical and theoretical insights behind the development of computer architecture.49 The
progression from one early computer to the next has been depicted as a series of abstract
architectural innovations to be checked off and annotated with dates and machines – first
conditional branch, first stored program, and so on. In turn, these innovations have sometimes
been represented as mere practical instantiations of the work of Alan Turing on the mathematical
logic of computation.50

This obsession with firsts has limited our understanding of all early machines, by
reducing each to a date and a couple of approved adjectives.51 Even ENIAC, with a long and
productive life, has been remembered only as a single historical point in 1945. During this
research we realized that the tradition has imposed even more serious limitations on general
understanding of Colossus. Within it, the implicit reason to care about Colossus has been that it
was the first programmable electronic computer. We don’t believe it was either of those things.
Colossus certainly followed a program, in that it sequenced different operations over time. But
contrary to previous claims, it was not programmable, because this sequence could not be
changed in any fundamental way. We think that Flowers’ own, carefully nuanced,
characterization of Colossus as an “electronic processor” rather than a “computer” is essentially
correct. Colossus did not have any capabilities for numerical operations. This sets it aside from
every other machine celebrated in the history of computing.

48 Biquinary representation, as used in the Colossus counters, took advantage of vacuum tube circuits that

had not just two stable positions but five. Using a two-position counter and a five-position counter for each decimal
digit allowed for ten possible combinations,

49 The classic contribution of this kind is Martin Davis, Engines of Logic: Mathematicians and the Origin
of the Computer (New York, NY: Norton, 2001).

50 This assumption is critiqued in Thomas Haigh, "Actually, Turing Did Not Invent the Computer,"
Communications of the ACM 57, no. 1 (January 2014):36-41.

51 Michael R Williams, "A Preview of Things to Come: Some Remarks on the First Generation of
Computers", in The First Computers: History and Architectures, ed. Raúl Rojas and Ulf Hashagen (Cambridge,
MA: MIT Press, 2000):1-16

Haigh & Priestley Colossus and Programmability – Preprint version 27

As Flowers proudly noted, Colossus certainly had many elements in common with early
computers. But its architecture and purpose were fundamentally different. In his public
statements on Colossus, Flowers situated Colossus within the context of early work on digital
communication. The recent proliferation of digital devices and the vanishing of “the computer”
as a distinct and coherent thing makes us better able to appreciate Colossus, as Flowers did
himself, more as a contribution to the development of digital communication than to computing.
Colossus was a digital electronic device able to generate bitstreams electronically, combine those
bitstreams with others read from paper tape, apply logical transformations, and count the results.

Claims for the historical importance of Colossus can and should be about more than the
exact string of adjectives to insert between “first” and “computer.” This challenges us to
articulate its importance in more productive terms, for example by its achievements in use. From
the traditional historiographic perspective, the only thing separating Colossus from the Atanasoff
Berry Computer is the insertion of the word “programmable” between “first” and “electronic
computer.” That distinction doesn’t hold up: both machines could be configured by setting
parameters, but not by defining new sequences of operations. As with Colossus, the basic
sequence of operations the ABC performed was fixed, in this case to solve systems of linear
equations, but its behavior would change based on the parameters supplied when the machine
was configured by setting switches and rewiring plug boards.52

Looking at the use of the two machines, rather than their claims to “firstness,” is a much
more revealing way of separating them. The ABC incorporated many novel features, but its
homebrewed input/output system (using sparks to burn paper) never worked reliably enough for
it to tackle the problems it had been built to solve. (It managed some useful work on much
simpler statistical problems, but nothing that would justify the creation of such an elaborate
machine). Colossus, in contrast, proved spectacularly effective when applied as intended. It
facilitated the reading by Allied commanders of some of Nazi Germany’s highest-level military
communications, including messages written by Hitler himself. It has been credited with a
crucial role in revealing German troop positions and plans in Normandy before and after the D-
day landings. It’s often claimed that breaking Enigma, or sometimes even the personal
contributions of Alan Turing, shortened the war by two years. 53 We find that unconvincing, as
did Max Hastings and John Keegan in overview histories of the contributions of intelligence

52 Alice R Burks and Arthur W Burks, The First Electronic Computer: The Atanasoff Story (Ann Arbor,

MI: University of Michigan Press, 1989).
53 The claim is often made that the Second World War was shortened by two years either by (a) Alan

Turing’s personal contributions to codebreaking, (b) breaking Enigma, or (c) Colossus. The original source of the
idea seems to be the introduction to E F Hinsley and Alan Stripp, eds., Code Breakers: The Inside Story of Bletchley
Park (New York: Oxford University Press, 1993) where it is made for Ultra intelligence, i.e. the Bletchley Park
operation as a whole. Specifically, the authors suggest that without the benefit of Ultra, the battle of the Atlantic and
the campaign in North Africa would both have taken significantly longer to win, with the result that the D-Day
landings could not have been attempted in 1944. They also believe that the landings would then have failed or been
impossible in 1945 without Ultra intelligence, in part because of attacks by V weapons and new weapons that in our
timeline Germany was not able to bring into operation. Thus D-Day would not take place until 1946, lengthening the
war by two years. This rather Britain-centric view seems to us to neglect the overall trend of the conflict. In
particular, the rapid progress of Soviet troops westward during the first half of 1944 suggests that the Red Army
would have reached Berlin well before mid-1947 with or without the D-Day landings. We also note that the atomic
weapons used in Japan in 1945 could have been deployed against Germany if the war had lasted even a few months
longer.

Haigh & Priestley Colossus and Programmability – Preprint version 28

work.54 Still, if access to Tunny intercepts shortened the war by even a month, that would make
Colossus one of the best investments in history. The ABC spent the war abandoned in a
basement.

Flowers’s partnership with the codebreakers at Bletchley Park predated his work on
Colossus, and he had enough sense of the operational context to optimize the usefulness and
versatility of his machines. Not only did he lead a project that quickly built a reliable machine
from exotic parts, but he also built exactly the machine that was needed by Britain’s
codebreakers to deliver intelligence to Allied leaders. In doing so it made an appreciable
contribution to the course of world history. Less than a year went by between the request from
Newman for Dollis Hill to work on a machine to tackle Tunny and the delivery of the first
Colossus to Bletchley Park, and for much of that time Flowers was focused on other machines.

Colossus also stood out for its reliability in comparison other similarly complex
electronic digital machines of the 1940s and early 1950s. All the others all seem to have spent a
year or so between being finished and being reliable enough to carry out useful work. For
example, after being moved to Aberdeen Proving Ground at the start of 1947 ENIAC relapsed
into unreliability, and for more than a year struggled to carry out any useful work. As Colin
Burke’s recently declassified work has shown, Colossus was one of many wartime designs for
complex devices, sometimes called “rapid analytical machines” intended to speed codebreaking.
No other machine of comparable technical ambition was ready in time to assist with the war, and
many of them never worked reliably enough to be useful.55 Colossus, in contrast, was handling a
full load of production work by March 1944, less than two months after being delivered to
Bletchley Park.56

This reminds us of the enormous importance of professional engineering work in
distinguishing the relatively small number of successful projects from the greater number of
failures. Flowers and his colleagues were part of a telecommunications engineering institution.
They could draw on experience, internal engineering talent, and existing relationships with
component suppliers. Colossus made extensive use of electronics for counters and logic. Flowers
insisted that these technologies were not unproven to him, even if the rest of the world was
skeptical, because of the pre-war work he had been doing on electronic telephone switching.57

Colossus challenges us to look beyond the traditional reading of the history of computing
in the 1940s as a series of incremental steps leading to the “modern computer.” Colossus is an
exemplary artifact of what we like to call the “early digital” because of, not despite, its
fundamental lack of architectural resemblance to a computer.58 Our analysis underlines the need
for a historiography of the early digital that is concerned with use as much as invention and for a
history of computing fully integrated with broader historical analyses, such as social, business,

54 Max Hastings, The Secret War (New York, NY: Harper Collins, 2016).
55 Colin B Burke, It Wasn't All Magic: The Early Struggle to Automate Cryptanalysis, 1930s-1960s

(National Security Agency, 2002). We expand on this point in another paper, working title “Colossus in Context,”
currently under review with Technology & Culture.

56 de Grey to Radley, March 29, 1944, HW 62/6, TNA.
57 Flowers, "The Design of Colossus".
58 Thomas Haigh, ed., Exploring the Early Digital (Springer, 2019).

Haigh & Priestley Colossus and Programmability – Preprint version 29

labor, and military history. If there has been such a thing as a digital revolution then it involved
much more than just computers.

Acknowledgements: This project was generously supported by by Mrs. L.D. Rope’s
Second Charitable Settlement. We extend our thanks to Crispin Rope and to all those at Lucy
House. Also to those who commented on drafts prior to submission including Brian Randell,
Martin Campbell-Kelly, Quinn DuPont, and others at the 2016 SIGCIS workshop and the
National Museum of Computing. We appreciate the helpful suggestions and careful analysis of
anonymous reviewers 2 and 3, which strengthened the paper significantly, and the editorial
guidance of David Hemmendinger.

	Situating Colossus
	Situating Colossus
	Was Colossus a Computer?
	Was Colossus a Computer?
	The Colossus Program
	The Colossus Program
	What Is a Program, Then?
	What Is a Program, Then?
	Defining Programmability
	Defining Programmability
	Parts and Controls of Colossus
	Parts and Controls of Colossus
	Parts and Controls of Colossus
	What Could the Controls Configure
	What Could the Controls Configure
	Was Colossus Binary?
	Was Colossus Binary?
	Was Colossus Binary?
	Conclusions: Colossus and the Early Digital
	Conclusions: Colossus and the Early Digital

