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Building on plans developed by Adele Goldstine and others, in April
1948, Nick Metropolis completed the conversion of ENIAC to the style
of programming first described in John von Neumann’s 1947 “First
Draft of a Report on the EDVAC,” making ENIAC the first computer to
execute programs written in the new style. This article documents the
conversion process and compares the 1948 ENIAC’s capabilities to
those of the first modern computers.

The Electronic Numerical Integrator and
Computer, or ENIAC, created at the Univer-
sity of Pennsylvania between 1943 and 1945,
has not been neglected by historians of com-
puting. After receiving considerable publicity
when first unveiled in 1946, it was at the cen-
ter of a series of high-profile patent lawsuits
in the 1960s and 1970s. Its 50th anniversary
was marked by the university with lavish cel-
ebrations presided over by the sitting vice
president of the United States and a reunion
organized by the US Army, on whose behalf it
was constructed.1 ENIAC has been repro-
duced on a chip and emulated in software.2

Several scholars have recently attempted to
reconstruct early ENIAC programs, learning
its unique system of switches and wires.3 In
recent years, its dwindling band of female
programmer-operators achieved minor celeb-
rity as female pioneers of computing.4 ENIAC
occupied a central space in the long-running
Smithsonian exhibit on the Information Age
as a kind of corridor through which visitors
walked to reemerge in the computer age. Its
corresponding, and sometimes unearned,
centrality to many different narratives about
computer history was memorably critiqued
by Michael S. Mahoney in his 2005 paper
“The Histories of Computing(s).”5

Despite this, ENIAC’s post-1945 career as
a functioning computer deserves closer

attention. Lawyers and historians have been
interested primarily in questions of priority—
for example, when did ENIAC first work, was
it really a computer, was it truly “general
purpose”? Both groups thus focused on
events from the beginning of ENIAC’s design
in 1943 to its initial operation at the Moore
School in late 1945 and 1946. For lawyers, the
date on which the ENIAC patent was filed
delineated a time span of evidence admissible
to challenge or defend its validity. Historians
focused similarly because we often care more
about what ENIAC led to, the stored-program
computer, than what it actually did.

Analysis of ENIAC as an innovation has
therefore tended to focus on the process by
which the machine was initially designed,
primarily by J. Presper Eckert and John
Mauchly, and built at the University of Penn-
sylvania’s Moore School. In most accounts,
including Atsushi Akera’s award-winning
Computing a Natural World and Scott McCart-
ney’s journalistic ENIAC, the story switches
elsewhere once the machine is operational
and its creators disperse to new projects.6 We
know a lot about ENIAC’s conception and
birth at the Moore School, but its productive
adulthood and doddering old age were spent
at the Army Ballistics Research Laboratory
(BRL) and have been little explored by schol-
arly historians.7
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In this article, we focus on the period
between mid-1947 and late 1948 as the most
transformative period in ENIAC’s later life. It
entered this period a sulky teenager, trauma-
tized by its move to a new town and bur-
dened with a programming system that made
it hard for even its closest friends to persuade
it to help them. By May 1948, what
renowned Los Alamos mathematician Stani-
slaw Ulam called the “miracle of the ENIAC”
had occurred after it was converted to a new
control system.8 ENIAC finished 1948 trium-
phant, as the world’s fastest and easiest-to-
program computer and a lynchpin of the
American nuclear weapons program.

The most important change was the
design and implementation of an entirely
new programming system, based on princi-
ples first described by John von Neumann in
1945 in the seminal “First Draft of a Report
on the EDVAC” (hereafter simply “the First
Draft”). This provided ENIAC with the con-
trol method planned for the new breed of
computers then under construction. We refer
to this, here and in the first article in this ser-
ies, as the “modern code paradigm.” ENIAC
was the first computer to execute a program
written in this modern form, a feat that has
been little recognized by historians.

Those unexcited by talk of “firsts” may
nevertheless find ENIAC’s transformation a
striking demonstration of what is sometimes
called “user-driven innovation.”9 Scholars
are aware that the many little tweaks and
improvements needed to reshape new inven-
tions into transformative innovations are
often performed by the people and organiza-
tions adopting the new technology. However,
historians have tended to treat ENIAC as a
largely static artifact, with capabilities and a
historical significance that were fixed at the
Moore School by 1945. From the viewpoint
of its later programmers, ENIAC as used from
1948 onward was more fundamentally a crea-
tion of von Neumann’s collaborators in
Princeton (with considerable assistance from
the computing staff at the Ballistics Research
Laboratory and a group of contractors led by
Betty Jean Bartik) than of its original design-
ers Eckert and Mauchly.

The first article in this series, “Re-
considering the Stored Program Concept,”
examined the history of the aforesaid idea
and proposed a set of more specific al-
ternatives.10 The third, “Los Alamos Bets on
ENIAC: Nuclear Monte Carlo Simulations,
1947–1948” (to appear in IEEE Annals, vol. 36,
no. 3, 2014), will examine in detail the first

program run on the machine after its conver-
sion to the new programming method.

Contexts
By 1946 several projects were already under-
way to build computers based on the ideas
described in von Neumann’s First Draft, fol-
lowing a quite different design from that
used for ENIAC. That year, computing pio-
neers from across the United States (plus a
few from England) convened at the Moore
School to learn how to build their own
machines. Still the world’s most powerful
computer, ENIAC was temporarily housed in
the same building. Yet the event’s organizers,
among them ENIAC’s own creators, had not
originally planned to give students access to
the machine, so sure were they that its
approach had already been superseded.

Not long afterward, ENIAC was finally
taken to pieces and delivered to Aberdeen.
Getting it back into a usable state was a
lengthy process. A log entry dated 29 July
1947 states that “ENIAC starts up again,” and
this has generally been taken as the date on
which it resumed work, although its recovery
was slow enough that little useful work was
performed that year.11 Even before ENIAC
was restarted in its new home, plans were
being drawn up to fundamentally modify its
programming style.

ENIAC’s architecture might already have
begun to seem outmoded to computer
designers, but as the fastest machine then in
existence, it was much more attractive to
groups with massive computations to per-
form. Those making the “pilgrimage” to
Aberdeen included John von Neumann.12 As
the only credited contributor to the First
Draft, he was recognized as an intellectual
force behind the new breed of computers,
and as a faculty member at the Institute of
Advanced Studies (IAS), he headed an influ-
ential early project to build an EDVAC-type
computer and to research the new coding
and analysis methods needed to make use of
such a machine.13

Los Alamos had a backlog of large-scale
computing needs, to which the institute’s
machine would be applied as soon as it
became operational. In early 1947, that point
remained several years away, even by the
most optimistic estimates. Thus, when von
Neumann, with Los Alamos scientists Robert
Richtmyer and Stanislaw Ulam, decided to
apply the new concept of Monte Carlo simu-
lation to nuclear chain reactions, he knew
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that ENIAC offered the best chance of apply-
ing it in the near future. By March he had
charged his close collaborators Herman and
Adele Goldstine, both veterans of ENIAC’s
Moore School days, to investigate the “set-
up” of ENIAC for Monte Carlo.14

Launching the Conversion Project
ENIAC control was originally highly distrib-
uted. It was configured to run a particular pro-
gram by wiring problem-specific connections
between several dozen constituent units and
configuring a mass of switches spread over
those units. W. Barkley Fritz, a member of the
ENIAC team at the BRL, later wrote that the
process “can best be described as analogous
to the design and development of a special-
purpose computer out of ENIAC component
parts for each new application.”15

As a result, constraints on the program-
ming capacity of ENIAC were spread across
many aspects of its design. These various con-
straints interacted in unpredictable ways to
further constrain the logical complexity of
the program. ENIAC programmers set up
individual instructions on the program con-
trols belonging to the machine’s various
units. The number and type of these controls
varied from unit to unit. For example, 240
controls were spread across the 20 accumula-
tors, providing for numerical transfers, addi-
tions, and subtractions, while each of the 24
controls on the high-speed multiplier defined
a single multiplication operation. The num-
ber of controls placed an upper limit on the
number of instructions each type a program
could contain. The master programmer con-
tained only 10 steppers, which further lim-
ited the overall logical complexity of a
program. Setting up a conditional test not
only tied up one of the master programmer’s
steppers but also monopolized one output
terminal of an accumulator, which limited
the usefulness of that accumulator for other
purposes. As the machine’s designers com-
mented in 1945, “in planning a set-up of a
problem for the ENIAC the inner economy of
the machine must be considered in alloca-
tion [sic] program facilities to various parts of
the program.”16

Around April 1947, John von Neumann
realized that ENIAC’s kit of parts could also
be used to build a general-purpose computer
controlled by a much simpler and more flexi-
ble programming method, similar to that
used to control the machine he was then
building at the IAS in Princeton. He and his

collaborators were by this point deeply
immersed in thinking through the design of
their new computer and the programming
techniques it would require, producing a ser-
ies of reports proposing a programming
methodology, a rich flow diagramming tech-
nique, and methods for handling what they
were already beginning to call subroutines.17

At that point, they had probably thought
more deeply about these issues than any
other group in the world, so it is not entirely
surprising that they applied the same con-
cepts to their work on ENIAC.

Its switches and wires would be configured
to decode and execute a fixed repertoire of
basic instructions. ENIAC was equipped with
three “function tables,” read-only memories
studded with large numbers of knobs. Each
knob set a single decimal digit. These had
originally been intended to store numerical
constants and lookup tables for function val-
ues. Because they were relatively plentiful
and gave high-speed, random access to the
numbers stored in them, the function tables
provided an excellent location for program
storage.

Work on the Monte Carlo simulation pro-
gram for Los Alamos took place in parallel
with the design of the new instruction set.
Von Neumann’s group in Princeton included
his acolyte Herman Goldstine. Their wives
Klara von Neumann and Adele Goldstine
were not IAS staff members but were inter-
ested in the new work. Los Alamos hired Adele
Goldstine as a consultant to assist with the
project, effective 7 June 1947.18 Klara von
Neumann was also hired around the same
time.19 Although young, still just 26 years old,
Goldstine’s qualifications were unmatched.
She had degrees in mathematics from Hunter
College and the University of Michigan and
had joined the staff of the Moore School in
1943, the year after arriving in Philadelphia
with her husband Herman. She had been
involved in planning for ENIAC programming
even before the machine was finished and
had trained the human “computers” at the
Moore School, among them many of ENIAC’s
first programmers, in mathematical techni-
ques. In 1946 she had compiled two volumes
of A Report on the ENIAC, somewhat confus-
ingly called “Part 1 Technical Description of
the ENIAC.” They remain the most detailed
guide ever produced to the functioning and
programming of ENIAC in its original mode.

Thus, the team combined an unmatched
knowledge of the new programming con-
cepts with an unparalleled understanding of
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ENIAC’s capabilities. In fact, Goldstine had
already written in some detail about the pos-
sibility of using function tables to generate
control pulses in her 1946 ENIAC documen-
tation, the relevant part of which ultimately
found its way into the ENIAC patent.20 This
provided additional flexibility in sequencing
the initiation of up to 14 small programs,
each configured in the traditional manner.
The 1947 approach was quite different, stor-
ing programs as numerical data rather than
directly generating control pulses from the
function tables. Still, Goldstine had already
documented the tables as control devices, so
this perhaps made the next leap seem more
natural to her collaborators.

Richard Clippinger, who was at that time a
mathematician working at BRL, later claimed
credit for the initial idea of converting ENIAC
to an EDVAC-like control method.21 How-
ever, in a 1948 report he had presented a dif-
ferent account:

In the Spring of 1947, J[ohn] von Neumann
suggested to the author that it would be possi-
ble to run the ENIAC in a way very different
from the way contemplated when it was
designed…. his suggestion has been worked
into a finished regime by J. von Neumann,
[Adele] Goldstine, [Betty Jean] Bartik, [Richard]
Clippinger, and [Art] Gehring with contribu-
tions by A. Galbraith, [John] Giese, [Kay]
McNulty, [John] Holberton, [“Betty”] Snyder
[later Holberton],[Ed] Schlain, [Kathe] Jacobi,
[Frances] Bilas, and [Sally] Spear. The role of
J. von Neumann in working out the details has
been a central one.22

Clippinger’s testimony in the ENIAC trial
clarifies the discrepancy. Under questioning,
his specific claim was to have originated the
earlier concept of sequencing subroutines via
function table pulses. Clippinger testified that
he had come up with the idea when working
on a complex set of airflow calculations and
that Goldstine had taken it from him without

credit. The entire subsequent conversion
effort was, in his mind, merely “several evolu-
tionary stages” in refinement of his funda-
mental insight. Clippinger testified to having
made his invention only after learning about
the dummy program technique from Adele
Goldstine in “April or May” of 1946 but was
then, under cross examination, unable to
explain why an engineering diagram for the
necessary “F.T. Program Adapter” had already
been drawn up in January of that year.23

J. Presper Eckert, who led electronics
design work on ENIAC, later wrote that when
designing ENIAC “we expected that at some
time someone would want to do this, so we
built the necessary cable…. Clippinger later
‘rediscovered’ these uses of the function
tables, without knowing that they had
already been provided for in the original
hardware.”24 Clippinger may well have con-
tributed to some planned elaboration of the
technique to generate control pulses directly
from the function table, which would explain
the decision taken by BRL early in 1947 to
order a new device known as the “converter.”
However, it seems clear that he provided nei-
ther the original idea for direct function table
control nor the later idea for ENIAC’s conver-
sion to the modern code paradigm.

The 51 Order Code
By mid-May 1947, intensive planning work
was underway for ENIAC’s conversion. Clip-
pinger had previously arranged for Jean Bar-
tik, a member of the original team of ENIAC
programmer-operators who did not move to
Aberdeen with the machine, to lead a five-
person group in Philadelphia doing work
under a one year contract to BRL.25 Conver-
sion planning was its largest project. Bartik
recalls a delegation from BRL traveling up to
Princeton with Clippinger for several visits of
“two or three days” to work with Adele Gold-
stine, during which John von Neumann
would spend “maybe half an hour a day”
with them.26

A letter written by John von Neumann to
R.H. Kent at BRL stated, “Four weeks have
passed since I started to discuss with you, and
in detail with Clippinger, the new method of
setting-up and programming ENIAC, and
two weeks since we concluded these prelimi-
nary discussions.” The letter was sent on 13
June 1947, so detailed discussion with Clip-
pinger began in mid-May and continued
intensively until the end of that month. It
also mentioned that “several variants of this
method have been worked out by Clippinger

By mid-May 1947,

intensive planning work

was underway for

ENIAC’s conversion.
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and his group, on the one hand, and the
Goldstines, on the other.”27 This led to what
were known informally as the Princeton con-
figuration, from the Goldstines, and the
Aberdeen configuration, from Bartik and
Clippinger.

The Philadelphia and Princeton teams
met regularly through the summer and
autumn of 1947. Adele Goldstine made sev-
eral collaborative trips to Philadelphia and at
least one to Aberdeen.28 By July, she had writ-
ten up a detailed preliminary conversion
plan and instruction set. Her report called
this a method of “central control,” which
nicely captures its consolidation of all appli-
cation-specific programming in the function
table switches.29 Conversion plans included
instruction sets and “set up” diagrams for
ENIAC showing the wiring and switch config-
urations needed to decode and execute the
instructions.

Those involved tended to refer to the vari-
ous plans by the number of instruction types
(“orders” in the parlance of the day) in-
cluded; hence this initial plan was the “51
order code.” Each instruction was identified
by a unique two-digit code. It required no
modifications or additions to ENIAC’s origi-
nal hardware, meaning that the number of
instruction codes was constrained by the
capacity of the master programmer unit.

The basic principles documented by Adele
Goldstine in July 1947 remained fundamental
to the central coding system used for the rest
of ENIAC’s career. Building an EDVAC-style
computer out of ENIAC’s “kit of parts” meant
designing a machine architecture as well as an
instruction set. To do this, the team made
extensive use of the principles developed in
von Neumann’s First Draft and subsequent
work, in particular the fundamental distinc-
tion between memory, arithmetic, and con-
trol units. Space here does not permit a full
discussion of ENIAC’s instruction set, new
programming method, or the details of its
method of conversion. These have been dis-
cussed previously by a number of authors.30

After conversion, ENIAC stored programs
and data interchangeably in an addressable
read-only memory. Approximately 3,600 dig-
its available across three function tables were
available for parameters, tables of constants,
and instructions. These function tables con-
sisted of banks of rotary switches, each with
positions 0–9. ENIAC programs could read
data values or instructions from any part of
the function tables but could not modify
them.

ENIAC’s basic structure might be likened
to a platoon of largely autonomous electronic
adding machines marching to the common
beat of its cycling unit. These accumulators
exchanged control pulses with each other
and with ENIAC’s other units, which
included specialized arithmetic units, input/
output units, and a “master programmer”
that counted off loop cycles. These signals
triggered whatever actions had been set up by
configuring a set of dedicated switches and
dials known as “program controls” to occur
when a pulse arrived on a wire attached to a
particular input terminal. Thus, the control
pulses (or, as they were often called,
“program pulses”) used to coordinate units
did not directly encode arguments or instruc-
tions but sent just one message: “Go!” The
actions initiated often involved sending or
receiving data, but this took place using dif-
ferent sets of terminals and different kinds of
cables.

It was not easy to centralize the control of
such a computer to support the modern code
paradigm because the latter was designed
around a fundamentally different architec-
ture. Goldstine’s draft thus imposed the vir-
tual outline of the abstract computer
discussed in the 1945 First Draft over the
complexity of ENIAC. It partitioned the 20
accumulators into three functional groups,
modeled on what today is often referred to as
the von Neumann architecture.

This provided the basic structure needed
to fetch and decode instructions. Instructions
were identified by a two-digit code, and up to
six instructions could be stored in each line
of the read-only function tables. After conver-
sion, ENIAC offered programmers capabilities

The basic principles

documented by Adele

Goldstine in July 1947

remained fundamental

to the central coding

system used for the rest

of ENIAC’s career.
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fundamentally similar to those of the
planned IAS computer. Each instruction was
implemented through “local” programming
using the traditional system of switches and
wires to trigger basic ENIAC operations, such
as clearing or incrementing accumulators
and transferring numbers between units.
This is reminiscent of the later practice of
microprogramming. For example, the FTN
instruction, a mnemonic for Function Table
Numerics, was described in later documenta-
tion as a combination of six distinct actions.
One was incrementing the address stored in
the first three digits of accumulator 8, while
another was clearing accumulator 11.31

When Goldstine partitioned ENIAC’s
hardware into what von Neumann had called
“organs,” she assigned eight accumulators to
the “arithmetic system.” Accumulator 15
became the machine’s “accumulator” in the
modern sense. She called it a “central arith-
metic and transfer organ.” Accumulator 13
was an auxiliary arithmetic register. The six
other accumulators placed within the arith-
metic system were akin to special-purpose
registers in later computer architectures and
were attached to ENIAC’s specialized hard-
ware units to serve as fixed sources or destina-
tions for the arguments and results of
multiplication, division and square root oper-
ations. Accumulators 11 and 15 were also
used as buffers to hold data read from the
function table or from punched cards. The
arithmetic operations provided were based
on those John von Neumann’s team was
then refining for its computer at the IAS, with
a few modifications made necessary by the
properties of ENIAC’s original arithmetic
circuits.32

The new architecture allocated three accu-
mulators to a “control system.” This initially
included what would later be called an
instruction register, although hardware
changes made that unnecessary in later revi-
sions of the plan. The control system also
held several four-digit function table add-
resses. Von Neumann’s EDVAC design had
relied on address modification for several
common operations, such as conditional
jumps and data reads from calculated loca-
tions.10 When planning ENIAC’s conversion,
Goldstine and her colleagues wanted to pre-
serve the capability of specifying at runtime
the address on which an instruction should
operate. Because the program instructions
themselves could not be modified, they
instead designed several ENIAC instructions
to work on addresses stored in control system

accumulators, where they could be manipu-
lated programmatically.

One was the “current control argument,”
the address of the current line of instructions.
By default, this was incremented each time
the instructions in a line were completed so
that instructions were executed sequentially.
An “unconditional transfer” instruction was
provided that overwrote the current control
argument with a new address, thus changing
the location from which the next instruction
code would be read. The other stored address,
the “future control argument,” was set with a
“substitution order.” When a conditional
transfer instruction was executed, if the sign
of the number in accumulator 15 was posi-
tive, the transfer was carried out by overwrit-
ing the current control argument with the
future control argument. As well as condi-
tional transfers, this technique was used
to implement subroutine returns and the
“variable remote connections” used in von
Neumann and (Herman) Goldstine’s flow
diagram notation to jump to a location deter-
mined and stored earlier in the computa-
tion.33 In this case, the limitations of ENIAC’s
hardware inspired a new mechanism that
directly paralleled the abstractions used in
the flow diagrams. These stored control
addresses gave ENIAC a simple form of
indirect addressing. More elegant indirect
addressing mechanisms, such as index regis-
ters, were widely relied on by later computers
to limit the need for code modification.

In this initial plan, nine accumulators
remained after other needs were addressed.
The arithmetic and programming capabilities
of these accumulators were hidden so that
they appeared to the programmer as simple
storage devices. Together with a much larger
expanse of read-only memory on the func-
tion tables, these accumulators constituted
what von Neumann had called the “memory
organ.” A pair of orders was defined for each
accumulator: a “talk” order that copied its
data into accumulator 15 and a “listen” order
that did the opposite.

Planning the 60 Order Code
The conversion plans went through several
revisions. During the second half of 1947,
efforts focused on the “60 order code.” Adele
Goldstine was by then less involved with
conversion planning because her focus had
shifted to programming a different kind of
nuclear simulation, codenamed Hippo, in
collaboration with Robert Richtmyer. Activ-
ity shifted to the ENIAC team at Aberdeen

Engineering “The Miracle of the ENIAC”: Implementing the Modern Code Paradigm

46 IEEE Annals of the History of Computing



and to Bartik’s group of subcontractors in
Philadelphia.34

At this point, a new piece of hardware
appeared in the plans. Connecting an addi-
tional 10-position electronic “stepper” unit
to ENIAC’s master programmer unit would
speed the decoding of the first digit of each
instruction. Based on this initial digit, a sig-
nal would be sent to one of the 10 internal
steppers, originally used to control nested
loops. The internal steppers had six “stages,”
each with its own output signal, and could
thus respond to values of the second digit in
the range 0 to 5 by firing off a control pulse
on one of 60 output wires leading from the
master programmer to the rest of ENIAC.
This redesign simplified the planned control
system and freed up an additional register for
general-purpose storage.35

The various 60 order code designs built
around this approach maintained the basic
structure of Goldstine’s original, diverging
principally by incorporating more control
instructions (to set up the current and future
control addresses and the function table
argument) and a much more flexible set of
shift instructions. By 13 November 1947,
Clippinger had summarized the work of Bar-
tik’s group into a proposed 60-instruction
set.36 One week later, a 19-page treatment of
the 60 order code was issued, including full
instruction definitions and detailed plans for
setting up ENIAC to execute the code, includ-
ing pulse timings, pulse amplifier configura-
tions, and settings for the individual units.37

It consolidated the Princeton and Aberdeen
variant instruction sets into a single docu-
ment. Around the same time, ENIAC pro-
grammer Betty Holberton was working on a
suite of test programs for the various units,
on which she received feedback from others,
including Clippinger and Goldstine.38 None
of these plans incorporated a 1,000-digit
delay-line memory often called “the register”
that BRL had decided back in February 1947
to equip ENIAC with. This presumably
reflected a well-grounded pessimism toward
the likelihood of it working reliably in time
for the initial conversion (or, as it turned out,
ever).39

Conversion plans were announced during
a press conference at Aberdeen on 12 Decem-
ber 1947 and reported in the New York Times
the next day. This coincided with Clip-
pinger’s initial presentation of the planned
conversion to a technical audience at the
1947 ACM meeting.40 In a report that repeat-
edly referred to ENIAC as a “robot,” the Times

disclosed that these changes would give it “a
substantial part of the efficiency which is
being built into the Edvac.”41

Implementation
Nicholas G. “Nick” Metropolis, a Los Alamos
veteran and confidant of John von Neumann
then working at the University of Chicago’s
Institute of Nuclear Studies, was scheduled to
arrive in Aberdeen to begin preparations for
Monte Carlo on 20 February 1948, by which
point BRL staff were expected to be “well on
the way” to reconfiguring ENIAC following
the expected completion of modifications
by the Moore School team on 9 February.42

In fact, reconfiguration for the 60 order
code had not started when he and Klara von
Neumann arrived, so this became a short
preparatory trip. According to Metropolis,
the two then began their own work to
design an expanded instruction set after
coming across the “converter,” a newly
arrived piece of hardware, which they real-
ized could be used to efficiently decode all
100 possible two digit codes.43 BRL had com-
mitted to installing the converter a year ear-
lier, but it was not used by the 60 order
code.44 Incorporating the converter expanded
the available instruction set, speeded opera-
tion, and freed up the master programmer
unit. The treatment of shifts was modified sig-
nificantly, with two parameterized instruc-
tions replaced by 20 different instruction
codes, each with a fixed meaning.

The log book maintained by ENIAC’s oper-
ators makes clear that, contrary to several pre-
vious accounts, the 60 order code was never
installed.45 It is unclear if the planned addi-
tional stepper was ever fitted, but the master
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programmer was not in the end used for
instruction decoding.

The converter unit was fitted to ENIAC on
15 March 1948. Two weeks later, on 29
March, the log shows that “Nick [Metropolis]
arrives about 4PM and started getting the
background coding on for the A.E.C.”—in
other words, beginning to configure ENIAC
with the new instruction set. The next day,
“Nick got the basic sequence & 2 or 3 orders
working,” and the day after that ENIAC was
“demonstrated for the first time using the
new coding scheme.” Various “troubles”
slowed progress, and Richard Merwin was
summoned from the Moore School to fix the
converter. By 6 April, implementation of a
“79 order code” was complete.

A lengthy period of testing and debugging
followed, full of “intermittents,” “transients,”
and other “troubles.” John and Klara von
Neumann arrived part way through. John left
soon afterward, but Klara stayed behind to
work with Metropolis for the rest of his time
there. According to the ENIAC Operations
Log, a demonstration to students of the
Applied Physics Laboratory on 12 April “went
off without hitches” and “was the first
adequate demonstration using the new cod-
ing techniques.” This was thus the first time
code written in the modern paradigm had
been successfully executed.

The “first production run” on the Monte
Carlo problem followed on 17 April, but
“troubles of various kinds” returned immedi-
ately. By 23 April, morale was flagging, and
the log recorded that “no progress [was]
made for the day. It looks like a major over-
haul or something drastic is necessary to
make the Eniac work properly.” Metropolis
salvaged the situation on 28 April with a
more modest intervention: dialing down
ENIAC’s clock from 100 KHz to 60 KHz. Reli-
able operation suddenly became the norm
rather than the exception. Production work
on the problem began in earnest, completing
on 10 May 1948. Stanislaw Ulam, one of sev-
eral who had been following the progress of
the work with interest, wrote to John von
Neumann that “I heard from Nick on the tel-
ephone that the miracle of the Eniac really
took place.”46

After Metropolis and Klara von Neumann
left, Clippinger took control of the machine.
He tweaked its configuration to implement
an 83 order code and revised the “enu-
meration of lines” imposed by Metropolis to
bring them into consistency with earlier
plans.47 Clippinger was then able to run a

long-planned supersonic air-flow simulation
program. By 6 July, specification of a 100
order code was complete, which actually pro-
vided just 84 distinct instructions.48 Two
more of its instructions were implemented
on 12 July. After this, the instruction set was
essentially unchanged for the next five years.
All subsequent ENIAC applications were pro-
grammed in the modern code paradigm.49 By
August 1952, ENIAC had tackled around 75
problems in this mode.50

ENIAC as a Stored-Program Computer
Having documented the capabilities of the
converted ENIAC (referred to hereafter as
1948 ENIAC, to distinguish it from the origi-
nal 1945 ENIAC), we are now in a position to
analyze it against the first generation of
EDVAC-inspired computers completed over
the next few years.

Machines based on the EDVAC design are
usually called “stored program computers.”
The current literature gives a rather contra-
dictory picture regarding the status of ENIAC
as a stored-program computer, reflecting the
inherent ambiguity of the concept. Those
who have looked closely at ENIAC in its post-
1948 configuration have generally described
it as a stored-program computer but have
qualified this with an adjective or two.

In one of the earliest articles on computer
history, Nick Metropolis himself suggested
that the stored-program computer was not
one breakthrough but a series of steps. He
credited ENIAC with the third step (“internal
control of calculations” in 1946) and the
fourth step (“storage control of a computer”
in 1948) but suggested that the final step of
“read write memories for stored programs”
was first implemented in 1949. Thus, one
should “credit the ENIAC as the first com-
puter to be run with a read-only stored pro-
gram” but the “BINAC and the EDSAC as
being the first computers to be run with a
dynamically modifiable stored program.”51

This proposed distinction was not taken
up by others. Two objections could logically
be made to his claim for ENIAC. The first
would be that ENIAC was not, even after its
modifications, a stored-program computer of
any kind. The second would be that it did not
become operational in stored-program mode
until after a purpose-built stored-program
computer, the Manchester Baby, on 21 June
1948.

The second objection, that of timing, is
widespread but is unequivocally refuted by
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the primary sources we cited earlier. In his
influential book, The Computer from Pascal to
von Neumann, published in 1972 (the same
year Metropolis gave his paper), Herman
Goldstine devoted several paragraphs to
ENIAC’s conversion and stated erroneously
but with apparent exactitude that “on 16 Sep-
tember 1948 the new system ran on the
ENIAC.”52 That was several months after the
Manchester Baby became operational, which
appeared to leave little point to debating the
status of ENIAC’s capability. Later authors,
including Hans Neukom, author of the most
detailed published treatment of ENIAC’s con-
version, generally accepted Goldstine’s date.53

The first objection, that 1948 ENIAC was
not truly a stored-program computer, cannot
be dealt with so conclusively because no clear
definition of “stored program computer” has
ever been agreed on. We have some sympa-
thy with the hyphenated definitions pro-
posed by Metropolis 40 years ago, but time
cannot be turned back, and the history of
computing community took a different direc-
tion. Goldstine himself, who spoke with
authority on the topic as a collaborator on
von Neumann’s seminal papers, called it “a
somewhat primitive stored program com-
puter.”54 In his definitive treatment of von
Neumann’s computing work, William Aspray
described it variously as “a (read only) stored
program computer,” something “used in
stored program mode,” and “modified for
stored program operation.”55 However, those
same authors elsewhere endorsed EDSAC as
the first useful stored-program computer.
They thus shared our sense, and that of
Metropolis, that ENIAC’s conversion imple-
mented key programming ideas and capabil-
ities from the First Draft but that it remained,
in some way they did not fully articulate, a
crude or partial embodiment of that model.

So, rather than arguing about whether or
not 1948 ENIAC was a stored-program com-
puter, we prefer to define its historical signifi-
cance in more precise terms. We argued in
the first article in this series, “Rethinking the
Stored-Program Concept,” that the complex
career of the stored-program concept has
hopelessly overloaded it with contradictory
meanings. The 1948 ENIAC aligns with some
of those meanings but not with others.10

In that article, we observed that different
authors have applied different implicit defi-
nitions to the “stored program concept.”
Some take it narrowly, as the storage of pro-
grams and data in a single memory. This has
led to claims that IBM’s SSEC was the first

stored-program computer or that Eckert and
Mauchly had invented the concept by Janu-
ary 1944, before they first met von Neumann.
Others define it more broadly, treating it as
synonymous with the von Neumann archi-
tecture or as encompassing the full scope
of the 1945 EDVAC design sketched in the
First Draft. It has increasingly been conflated
with later conceptions of the computer as
an embodiment of the universal Turing ma-
chine. Discussion of it as a singular concept
has fueled the misperception that there was
only one important idea in the First Draft and
that this came somehow from Alan Turing.56

Thus, we suggested that the concepts
embodied in the First Draft and implemented
in the dominant computer designs of the
1950s might instead be separated into three
distinct clusters. Although unmistakably
intertwined, these were in some cases imple-
mented separately in the machines of the late
1940s and have had separate careers over the
decades since. First was the EDVAC hardware
paradigm, coupling a binary, all-electronic
computer to a large, high-speed memory. Sec-
ond was the von Neumann architecture para-
digm, the elegant and minimalist system of
central control of serial operations, special-
ized registers, and division of the computer
into separate “organs” for control, arith-
metic, and memory. The third cluster formed
what we dubbed the modern code paradigm,
a set of ideas about the form and capabilities
of instructions for such a computer.

We identified six specific features of the
modern code paradigm, grounding each one
in specific language in the First Draft:

� The program is executed completely
automatically, except as needed to pre-
pare input and output devices.

� The program is written as a single
sequence of instructions, known as
“orders” in the First Draft, which are
stored in numbered memory locations
along with data.

� Each instruction within the program
specifies one of a set of atomic opera-
tions made available to the programmer.
This usually involved beginning the
instruction with one of a small number
of operation codes.

� The program’s instructions are usually
executed in a predetermined sequence.

� However, a program can instruct the
computer to depart from this ordinary
sequence and jump to a different point
in the program.
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� The address on which an instruction acts
can change during the course of the pro-
gram’s execution.

After its conversion, ENIAC’s program-
ming system embodied these key features of
the modern code paradigm as described in
the 1945 First Draft. Its code and flow dia-
grams, which we describe in the third article
in this series, have an unmistakable kinship
with those described by von Neumann’s team
in their publications on their IAS computer.

However, 1948 ENIAC only emulated (to
use an anachronistic term) the von Neumann
architecture and clearly did not acquire any
of the minimalism of the EDVAC hardware
paradigm. It was not a significant model for
builders of later computers. We reported in
our previous article that the significance of
“EDVAC-type machines” in the 1940s was
understood primarily in terms of the simplic-
ity and flexibility of the new architecture that,
combined with new memory technologies,
promised a radical reduction in the number
of expensive and unreliable tubes needed.
Clearly, ENIAC remained just as bulky and full
of tubes after its conversion, and thus it stayed
off the mental radar of other computing
groups. In contrast, the Manchester Baby’s
demonstration that cathode-ray tube storage
worked was treated as sensational news.57

Comparative Analysis
When comparing the Manchester Baby,
EDSAC, Pilot Ace, and 1948 ENIAC against
von Neumann’s EDVAC design, it is only by
elevating certain aspects and ignoring others
that one can draw a clear line separating 1948

ENIAC from the other three machines (see
Tables 1–3).

Although the Manchester Baby is univer-
sally recognized as a stored-program com-
puter, the 1948 ENIAC came much closer to
many aspects of the EDVAC vision. For exam-
ple, von Neumann insisted on a large mem-
ory capacity, favoring 8,192 32-bit words. Yet
the Manchester Baby had just 32 words of
memory in which to store programs and data.
It could run only programs of trivial scope.
ENIAC’s writable memory was similarly tiny,
but its read-only program memory was much
closer to the size suggested in the report.

Once EDVAC-type machines were actually
built, their users quickly discovered techni-
ques to load program code into memory
under computer control from external stor-
age devices (considered as a separate organ,
“R,” in von Neumann’s draft). This was cru-
cial to many kinds of systems software and
some automatic programming tools. Clearly,
ENIAC could not do this, although EDVAC as
described in the First Draft would also have
faced some significant limitations because its
instructions were flagged to protect them
from being fully overwritten. As a matter of
practice, both 1948 ENIAC and the Baby were
usually programmed with switches. The Baby
had no other input device, whereas 1948
ENIAC could execute programs directly from
punched cards. The Baby’s parts were soon
used to build a complete and useful com-
puter, now known as the Manchester Mark I,
which was fully operational by late 1949. We
focus here on the Baby, however, because it is
generally accepted as the first “stored pro-
gram” computer to operate or, in some for-
mulations, the first machine to run a stored
program, and it hence provides a natural
comparison point.

The question of utility has played a some-
what inconsistent role in the historical litera-
ture on early stored-program computers,
perhaps because it has been used instrumen-
tally to grant both Manchester and Cam-
bridge the right to celebrate the first modern
computer. EDSAC is generally called the first
“useful,” “practical,” or “full-scale” stored-
program computer and is thus credited with
a more significant historical role than that of
the Baby.71 Yet 1948 ENIAC was, for many
kinds of problem, more useful, more practi-
cal, and larger in scale than either.

The instruction set of the 1948 ENIAC was
comparable in scope to that of EDSAC, and of
course, far more complete than that of the
Manchester Baby. Most ENIAC instructions

After its conversion,

ENIAC’s programming

system embodied the

key features of the

modern code paradigm

as described in the 1945

First Draft.
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were stored in just two digits, giving it the
potential to store a more complex program
than EDSAC, which had to commit the
entirety of one of its 512 17-bit words to store
even the simplest instruction. Programming
1948 ENIAC involved a lot of shuffling data
into and out of particular accumulators, but
this was typical of the era and follows von
Neumann’s approach to registers in EDVAC.
The compact two-digit instruction format of
1948 ENIAC included some unusually power-
ful instructions, including square root, a
range of decimal shift options, and transfer of
an entire punched card’s worth of informa-
tion to or from electronic memory.

Discussion of the computational legacies
of early computers can easily veer into the

counterfactual. Fortunately, the ENIAC
Monte Carlo calculations are exceptionally
well documented, allowing us to focus on the
abilities of the machine as actually used. The
second version of the program consisted of
approximately 840 instructions, largely filling
two of ENIAC’s function tables, and used
most of the third for constant data. The code
listing separates these into dozens of blocks,
each numbered according to the correspond-
ing operation on the flow diagram.72 Within
this code, we have documented the use of
conditional and unconditional jumps, a sub-
routine called from two points in the code,
storage of return addresses, address modifica-
tion via indirect addressing, the calculation of
addresses for data reads to pull information

Table 1. Part 1 comparison of ENIAC, EDVAC, and three other computers of the late 1940s with
von Neumann’s 1945 plan.

Computer
Operational
(specs as of)

Programs
loaded via

Programs
usually
executed
from

Programs
also executed
from

Readable,
addressable
memory size*

Writable
high-speed
memory
size*

1945 EDVAC N/A Mechanism not

specified,

storage was

“organ R”

Mercury delay

lines

N/A 8,192 32-bit words

[262,000 ]

Same as

readable

1945 ENIAC Dec. 1945/

Jan. 1946

Rewired from

“set up

diagrams”

Distributed

system of

switches, plug

boards and ad

hoc busses

N/A 4,000 decimal

digits (data only)

[12,800]

200 decimal

digits [640]

IBM SSEC Jan. 1948 Run directly from

card/tape

High-speed

paper tape

Relay memory,

electronic

memory

Up to 100 19-digit

words (only 8

electronic, others

relay)58 [7,70059]

Same as

readable

1948 ENIAC 12 Apr. 1948 Turning switches Banks of

switches

Direct from

punched

card

4,000 decimal

digits [12,80060]

200 decimal

digits

(many

double as

special-

purpose

registers)

[640]

Manchester

Baby SSEM

21 June 1948 Flipping switches Williams tubes N/A 32 words [1,024] Same as

readable

EDSAC 6 May 1949 5-channel paper

tape, 31 words

of memory

wired onto

terminals for

“initial orders”

Mercury delay

lines

N/A 512 17-bit words61

[8,704]

Same as

readable

* Numbers in brackets indicates the approximately equivalent size in bits.
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from one- and two-dimensional arrays stored
in the function tables, and storage of program
code and data within the same addressable
memory space. We discuss these programs in
detail in the final article in this series,
“Gambling on ENIAC,” describing the initial
series of Monte Carlo calculations.73 Thus, we
feel comfortable asserting that ENIAC ran the
first modern computer program.

What ENIAC still could not do was store
variables in the same memory as code and
constants. These had to be squeezed into the
vacuum-tube memory spread around its 20
accumulators. In the Monte Carlo code,
some accumulators were assigned to track
values of the same physical quantities th-
roughout the computation, rather like global
variables, while others were reused for tempo-
rary storage of different variables at different

points in the calculation. In the conversion
design as implemented, 131 decimal digits of
accumulator memory were entirely safe from
the threat of being overwritten and so could
be used without any special precautions to
store global data. Another 30 digits could be
used with caution to store temporary data
because their special roles were connected
with operations such as square root that were
executed infrequently.

A comparison with EDSAC gives a useful
sense of how 1948 ENIAC measured up to the
earliest universally recognized full-scale
stored-program computers. The Monte Carlo
code suggests that ENIAC’s practical capabil-
ities, at least for this task, were little affected
by the restrictions imposed by its dual-
memory system. It’s unclear if EDSAC, as con-
figured in 1949, could have accommodated

Table 2. Part 2 comparison of ENIAC, EDVAC, and three other computers of the late 1940s with
von Neumann’s 1945 plan.

Computer
Add time
(micro-seconds) Input/output

Conditional branch
mechanism

Address
modification
mechanism

1945 EDVAC N/A Various options Via instruction modification Instruction modification

1945 ENIAC 20062 Punched-card

machines (one

at 133 cps for

output, one at

133 cps for

input)63

Adapter and “dummy

program” turns data

output from comparison

into control input

N/A

IBM SSEC 28564 Many card readers

and high-speed

80-track tape

readers

Transfer control to device

specified by 2-digit code,

mapped via plug board

Instructions stored in

electronic or relay

memory could be

modified

programmatically

1948 ENIAC 1,20065 Punched-card

machines (one

at 133 cps for

output, one at

133 cps for

input)66

N3D6 order loads 3-digit

argument into

accumulator 6, CT order

jumps to that address if

accumulator 15 is

positive

Indirect addressing –

the address to use for

jumps and data reads

is stored in a special

register (a designated

accumulator)

Manchester

Baby SSEM

2,88067 Results read from

tube. Numbers

entered via

switches.

Skip next instruction if

accumulator is negative.

Transfer instructions use

memory indirect

addressing, so modify

the data word hold-

ing the address.68 For

data operations via

instruction

modification

EDSAC 1,500 5 channel paper

tape at 6.23

cps,69 Teleprinter

Conditional branch to

location specified in

instruction based on sign

of accumulator or via

instruction modification

Instruction modification
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this program at all. The 1948 Monte Carlo
code was more than 800 instructions long, so
an EDSAC conversion would have had to be
streamlined before it could be loaded into its
512-word memory.74 If program and con-
stants could be compressed enough to fit at
all, there would certainly be no more room
for working data than on ENIAC.

Only ENIAC’s relatively robust input and
output capabilities made Monte Carlo feasi-
ble at all. A data-intensive simulation would
soon have exhausted the memory of any
early computer, leaving overall throughput
bound by input-output performance. ENIAC
could read and write punched cards using
high-performance IBM units, and the Monte
Carlo cards were sorted and processed
between computer runs on conventional
punched-card equipment. Like many other

early computers, EDSAC used paper tape,
which was slower, cumbersome in large vol-
umes, and impossible to sort. Hence, we
doubt that these Monte Carlo calculations
could have been usefully run on EDSAC,
even if the code and data needed to run the
program could have been shoehorned in.

Usability is another aspect of practicality.
For a machine of its era, the 1948 ENIAC was,
when working reliably, exceptionally easy to
program and debug. ENIAC had always sup-
ported single-step debugging and a variable
clock so that the machine could operate
slowly enough for its operator to follow the
progress of a computation. Neon lights in
each accumulator displayed the entire con-
tents of the electronic memory. Following the
conversion to the modern code paradigm,
the entire program was now visible on the

Table 3. Part 3 comparison of ENIAC, EDVAC, and three other computers of the late 1940s with
von Neumann’s 1945 plan.

Computer
Instruction
format

Instruction
word length Instruction set

Maximum program
length

1945 EDVAC 1 address 32 bits 8 operations, mostly load and

store for different registers with

one arithmetic instruction

performing 1 of 10 operations

on a stack-like configuration of

three registers

8,192 instructions, less

space needed for data

1945 ENIAC N/A N/A N/A N/A (multiple constraints

distributed around

machine)

IBM SSEC 4 address 19 decimal

digits

2 instructions per word, 3 digits

for operation code, 2 digits

each for addresses, including

next instruction source (have

not located full instruction set)

Effectively unlimited (as a

large program can span

many paper tapes), each

subroutine on a different

tape, number of jumps

limited by 2-digit address

coding scheme

1948 ENIAC 0 and 1 address

mix70

2 to 8 decimal

digits

79 instructions, 40 of which are

store or load variants and 20 are

shifts

1,460 instructions

(assumes average 2.6

digits per instruction),

less space needed for

constants

Manchester

Baby SSEM

1 address 16 bit Subtract, negate, transfer,

conditional skip, conditional

jump, unconditional jump, halt

32 instructions, less space

needed for data

EDSAC 1 address 17 bit Add, subtract, copy to multiply

register, multiply (x2), transfer

(x2), collate, shift (x2),

conditional jump (x2), read

tape, print, verify output, no

operation, round, halt

512 instructions, less space

needed for data (and

initial orders)
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function tables and could be altered at any
time by turning switches. This made it easy to
set a break point or debug interactively.

Conclusions
Ulam was right to be excited. Thanks to the
almost miraculous feat of user-driven innova-
tion engineered by von Neumann’s collabo-
rators, ENIAC acquired most, but not all, of
the functional capabilities then associated
with EDVAC-type machines. The Monte
Carlo simulation run for Los Alamos in the
spring of 1948 was written in the style of
other early programs for modern computers,
which we call the modern code paradigm,
and was the first such program to be exe-
cuted. ENIAC gained the flexibility and con-
ceptual simplicity of programming associated
with this paradigm, with program instruc-
tions and constant data held in the same
read-only memory. This shows the remark-
able malleability of this early computer and
the profound role played by its users in recon-
structing it.

Broadening our perspective from the
architectural details of early computers and
their relative positions on a timeline of semi-
nal accomplishments to their uses further
underscores the importance of 1948 ENIAC.
ENIAC was the only computer doing useful
work with programs coded in the new style
from April 1948 until EDSAC began to regu-
larly tackle problems from users in early
1950.75 Not until SEAC began service in Sep-
tember 1950 was a more powerful computer
of this kind available in the United States. We
are confident that, as historians gravitate to
issues of programming practice and com-
puter use, the 1948 ENIAC conversion and its
execution of the complex Monte Carlo stored
program will increasingly be viewed as

important events in the early modern period
of electronic computing.
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