
How Data Got its Base:
Information Storage Software
in the 1950s and 1960s

Thomas Haigh
University of Wisconsin, Milwaukee

Generalized report generation and file maintenance programs were
widely used in the 1950s, standardized by the Share user group with
9PAC and Surge. By the 1960s the first recognizable DBMS systems,
such IMS and IDS, had evolved to address the challenges of disk drives
and MIS projects. Finally, in the late 1960s Codasyl’s Data Base Task
Group formulated the DBMS concept itself.

The database management system (DBMS) is
the foundation of almost every modern busi-
ness information system. Since the 1950s,
the storage, retrieval, and updating of large
volumes of stored data has been a key re-
quirement for most computer applications,
which is why data processing was the com-
mon name for administrative computing
work from the mid-1950s to early 1980s.
Nothing has been more vital to the com-
puter’s success as an administrative tool
than the development of software to hide
the complexities of data manipulation
from application programmers and end
users. Today, a flurry of database transac-
tions powers each update of a major Web
site, literature search, or Internet shopping
trip. Yet little research addresses the history
of this vital technology or the ideas behind
it. Although some attention has been paid
to the DBMS as an important product class
for the early software industry, professional
historians have given little attention to its
technological evolution, influence on data
processing practice, or intellectual history.1

When short technical histories feature in
texts and essays by database specialists,
they are schematic and generally begin
with the publication of a series of reports
by the data processing standards group
Codasyl from 1969 onward.2

In this article, I adopt a different perspec-
tive, in which Codasyl’s specifications are
not the starting point but the culmination
of 15 years of practice and experience by
administrative computing specialists. By
framing work during the 1950s on report

generators and generalized file maintenance
systems such as Surge and 9PAC in the
context of the needs and priorities of data
processing users, I expose the submerged
foundations of the DBMS in these earlier,
user-driven projects. Likewise, by interpreting
the work of the 1960s, particularly Charles
Bachman’s efforts on Integrated Data Store
(IDS) and other projects, in the context of
efforts to build so-called total management
information systems (MISs), I connect the
creation of early DBMSs with the broader
managerial and organizational context that
drove these efforts. Today, Codasyl’s database
work is remembered only for its propagation
of the network data model. My final discus-
sion of the work of Codasyl’s Data Base Task
Group and Systems Committee, however,
highlights their role in articulating and dis-
seminating the DBMS concept and a surpris-
ingly modern and ambitious description of
its architecture and capabilities.

This article follows recent work in science
and technology studies by emphasizing what
has been called the ‘‘materiality’’ of early
computing technologies as an influence on
both computing practice and the subsequent
development of software technologies.3 Writ-
ing on software tends to emphasize its ab-
stract and ethereal nature, but database
tools evolved from the daily work of the
data processing staff, grappling with tight
schedules and working intimately with sim-
ple hardware to tackle ambitious assign-
ments. Software tools encapsulate craft
knowledge, working practices, and cultural
assumptions. Thanks to the power of

6 IEEE Annals of the History of Computing 1058-6180/09/$26.00 �c 2009 IEEEPublished by the IEEE Computer Society

backward compatibility and installed base (or
what historians of technology call technologi-
cal momentum), these encapsulated qualities
are reproduced with each new software revi-
sion, often enduring for decades.4 To under-
stand the development, appeal, and form of
early DBMSs, we must also understand the
data processing cultures, technologies, and
practices of the 1950s and 1960s.

Because the database management system
exists behind the scenes, invisible to most
people, a few definitions are in order. The
DBMS is a complex piece of system software
able to manage multiple databases, each con-
sisting of many different data tables. It
includes mechanisms for application pro-
grams to store, retrieve, and modify this
data and also lets users query it interactively.
One of the most important features of the
DBMS is its ability to shield the people and
programs using the data from the details of
its physical storage. It polices access the
stored data, giving access only to tables and
records for which a given user has been
authorized. Because all access to stored data
is mediated through the DBMS, a database
can be restructured or moved to a different
computer without disrupting the programs
using it.

Early data processing, 1954–1957
The DBMS evolved from generalized file

maintenance and report generation created
within the unglamorous world of corporate
data processing to simplify the creation of
programs for routine administration. File-
maintenance systems were intended to
reduce the cost of producing routine admin-
istrative programs and make the finished
programs easier to change and maintain.
Report-generation systems made it easier to
produce printed reports based on particular
criteria.

Computer use in the early 1950s was
dominated by scientific computation. By
the end of that decade, the balance had
shifted decisively toward business adminis-
tration applications.5 Most computer instal-
lations were organized around running a
handful of automated clerical tasks, most
commonly payroll and accounting, over
and over again. Data processing jobs were
not run interactively during this era. Instead,
they were run through the computer one at a
time, either manually or with an automatic
queue managed by a simple operating system
(OS). Programs and the input data they were
processing were loaded together into the

computer. Input data was entered onto
punched cards by specialist key-punch opera-
tors. On smaller, cheaper computers such as
the IBM 650, the workhorse machine of the
late 1950s, these cards would remain the
main storage medium. On larger computers,
the data punched onto the cards was usually
transferred to tape for processing and storage.

None of this seemed, to borrow a phrase
from the era, like rocket science. Processing
a weekly payroll run ought to be easier than
modeling a missile flight path. Yet, the first
generation of American data processing
installations spent much more and took far
longer than expected to get their electronic
marvels doing useful work. General Electric’s
famous 1954 use of a Univac computer to au-
tomate payroll processing set the pattern for
other firms.6 Data processing managers were
shocked by the complexity of programming
work and the inflexibility computerization
imposed on areas such as data entry and
special-case handling. Standard application
packages were rare in the 1950s and 1960s.
Instead, code was specially written for each
user company, usually from scratch by in-
house programmers (though sometimes
with the aid of consultants or using a sam-
ple program as a base). Data processing
applications were usually written with as-
sembly language, although Cobol gradually
gained popularity over the 1960s.

Data was stored on tape as a sequence of
codes, and efficient processing was possible
only when the tape was read from start to
end with a minimum of rewinding or search-
ing. Early computers had small internal mem-
ories, which limited the complexity of each
application program and the amount of data
it could read in one go. Memory limitations,
coupled with the inflexible, serial nature of
tape storage, meant that a single major job
might require dozens of programs to be run
one after another, each reading and writing in-
formation from several tapes. Most of these
programs processed intermediate results writ-
ten during earlier runs, as shown in Figure 1.

The concepts of records, files, fields, spe-
cial codes to mark the beginning and end
of files, and the merging information from
one file to another (all ubiquitous in com-
puter systems today) have their origins in
electromechanical punched card machine
methods dating back to the 1930s.8 Records
using the same basic format were laid out
sequentially along the strip of magnetic
tape. Additional codes were introduced to
provide checks against corrupted data.

October–December 2009 7

Some things were much harder to accom-
plish with high-end, tape-based computers of
the 1950s than they had been with the spe-
cialized machines of the punched-card days.
Before a file could be used for a particular
task, such as generating required output or
being used to update a set of master records,
its contents had to be sorted into the appro-
priate order. With conventional punched-
card machines, this was easily accomplished
by physically reordering the cards in a sorter.
In contrast, slicing the magnetic tape into
thousands of little pieces and sticking it
back together was hardly a viable option.
Neither was reading the entire file into
memory.

Early sorting practice is captured in IBM’s
‘‘705 Generalized Sorting Program Sort 51,’’
issued in 1955. The original file was split
into two files. These were repeatedly copied
from two input to two output tapes. Each
sorting run brought the records a step closer

to being ordered. When just two ordered
sequences remained, these were consolidated
into a single output file. In the worst case,
sorting a single input tape holding 50,000
records of 100 characters each might require
17 runs through the million-dollar computer,
occupying it for approximately an hour.9

File-sort programs sound trivial, but even in
the 1970s, some of the most important inde-
pendent software products were generalized
sort routines.

Early application programs were written
in assembly language and ran without a
memory resident operating system to handle
input and output chores. They thus had to
specify the minute details of reading and
writing information to and from tape, card,
or drum.10 Programs were closely tied to par-
ticular hardware configurations. Changing
the tape drive used for temporary storage
might require considerable programming
work, while adapting a program to make

History of DBMS

Figure 1. Part of a file-based system for manufacturing control, circa 1962. The system would have involved many runs,

evidenced by the large number of programs and intermediate files involved.7

8 IEEE Annals of the History of Computing

efficient use of more memory sometimes
involved a fundamental rewrite. The problem
was compounded as companies attempted to
reap the benefits of automation by using the
output of one major application as the input
to another—for example, by linking their
production scheduling to their inventory
control, their accounts receivable, and bill-
ing. Because one major application might
contain dozens of small programs, it could
take Herculean efforts on the part of the pro-
gramming staff to do something as simple as
adding an extra digit to the employee
number.

The pioneers of the late 1950s and early
1960s evolved new practices as they struggled
to contain costs while maximizing flexibility.
Data processing programmers spent much
of their time crafting code to read records
from tapes and print lines on paper, dealing
each time with the many read errors, syn-
chronization problems, and other problems
that might strike at any time. Data processing
teams soon hit on the idea of producing a
single set of well-written, reusable subrou-
tines to handle these chores. Standard code
was modified slightly to fit the particular sit-
uation and then inserted into each applica-
tion program, often via assembler macro
instructions.

Technological change also motivated the
shift to standardized I/O routines. Computer
manufacturers built ever-more powerful
capabilities into their data processing hard-
ware, meaning that the programming work
required to read and write records on tape
with maximum efficiency became more com-
plex. For example, IBM’s tape hardware for
the 705 (announced 1954) could read
15,000 characters a second either forward or
backward, from a reel holding five million
characters. Tape units functioned somewhat
independently of the main processor, under
the control of a separate tape-control unit.
A single read instruction would transfer five
characters at a time for improved efficiency.
Specified areas of the main memory were
used as buffers, so that the computer could
process one record while another was trans-
ferred. Drives could even read and write
simultaneously to the same tape, for efficient
file updates. Read and write operations were
automatically verified using a parity bit and
a special instruction would rewind by one
unit record, making it easier to repeat a failed
read operation.11 The application program-
mer still remained responsible for writing
code to carry out operations such as parsing

a record into fields, searching for a record
with a particular key value, or inserting a rec-
ord into an existing file.

Report-generation software, 1957
In some areas of data processing a

technique known as generalization could
eliminate the need for a custom program en-
tirely. One such area, quickly recognized, was
sorting records. Another was report genera-
tion and the closely related area of file
maintenance.

Data processing applications produced
voluminous printed reports during their
scheduled runs (daily, weekly, monthly, or
quarterly), but the only way to obtain a spe-
cial report was to write another program. A
manager wishing to tabulate data in a differ-
ent way, or to include only a subset of the
original records in the calculations, could ei-
ther wait for a programmer to get around to
this job or wade through the printout tally-
ing records. By the late 1950s, the more inno-
vative data processing teams had begun to
address this by creating report-generation
programs. Data processing personnel pro-
vided these programs with descriptions of
the desired output and the organization
of the data inside the relevant master files
and were rewarded with the desired reports.

The most influential early system for gen-
eralized report creation was designed in 1957
by GE’s team at the Hanford Nuclear Reserva-
tion on its IBM 702—IBM’s first large com-
puter designed for administrative use.
Generalized file-sort routines were already
in use there, but the idea was to produce a
suite of three new generalized programs: the
report generator, an improved sort routine,
and a file-maintenance program able to
make changes to file formats as well as file
data. All three worked with a consistent
source file dictionary that described record for-
mats, which was included as a header at the
start of each data file. The report-generator
program used this data dictionary and an
input file holding details of the desired report
format (which could include calculated fields
such as totals and subtotals) to produce a cus-
tomized program that, when compiled and
executed, would yield the desired output.
An updated version of the report generator,
finished in 1958, added integral sort capabil-
ities and expanded facilities for complex cal-
culations.12,13 Because it was optimized for
memory efficiency, the system could produce
up to 20 simultaneous reports on a single run
through the source data tapes (p. 65).14

October–December 2009 9

Tom Haigh
Callout
Substitute "different tapes" for "the same tape" here. I misread the manual.

The objective was to make data stored on
tape easily accessible for reporting purposes,
just like data in traditional punched-card sys-
tems. The urgent need for programs of this
kind reflected the computer’s complexity as
a general-purpose machine. Punched-card
machines were specialized for specific tasks
such as sorting or tabulating and were config-
ured by setting switches or inserting wires
into a patch board. Computers required elab-
orate programming.

Project participant Russell McGee remem-
bers that the Hanford managers responsible
for business programming and computer
operations ‘‘all had extensive punched card
backgrounds, which had a profound influ-
ence on our work.’’15 The ultimate goal was
‘‘a single powerful computer on which all
data for the organization . . . was stored and
available for reporting and processing.’’13

His colleague Fred Gruenberger noted that
punched-card experience likewise shaped
customer expectations. Managers who re-
quested changes to reports were ‘‘vitriolic’’
when told that minor changes required pro-
grams to be written ‘‘at the cost of $1,500’’
when they had been ‘‘well trained by us in
data processing over the years to the idea
that all you have to do to change your report
is move five wires on the 405’’ (pp. 49–50).14

The GE effort was not the only one of its
kind, and participants quickly realized that
companies were wasting effort by producing
their own systems. Gruenberger organized a
panel for the October 1957 meeting of the
IBM Share user group. Noting that develop-
ment of these systems had so far been a
‘‘100 percent non-cooperative programming
venture which curiously enough took place
at about four independent installations at al-
most the same time within a period of six
months;’’ he expressed hope for future
collaboration.16

Standardizing file management
systems, 1957–1961

For its first few years in the computer busi-
ness, IBM left systems programming work to
its customers. Its main strategy for providing
its customers with utility programs was to
help them help themselves via collaborative
user groups. In 1955, initial deliveries of
the IBM 702, the firm’s first large administra-
tive computer, were accompanied by nothing
more than listings for a symbolic assembler
and a sample sort program. The code for
both was presented in its programming man-
ual, ‘‘for study and actual application if

desired.’’ By 1956, there were still only nine
IBM programmers working to support its suc-
cessor, the 705.17

User groups filled the vacuum, creating
program libraries full of routines contributed
by user companies and organizing project
committees to design and create ambitious
new programs flexible enough to satisfy
many companies. Share was for users of
IBM’s large scientific computers, and a corre-
sponding group Guide was formed for users
of its most expensive administrative
machines.18 Initially, IBM’s main contribu-
tion to these efforts was to handle the logis-
tics of cataloging and distributing the
software libraries, although by the late
1950s, its programmers were increasingly
involved in implementing the packages
specified by Share.

In the mid-1950s, Share’s members were
dealing with IBM’s 704, a machine optimized
for scientific calculation that was rarely ap-
plied to administrative tasks. Its successor,
the 709, was promoted as being equally
adept at administrative work and technical
computing, pushing Share toward engage-
ment with data processing issues. Share’s big-
gest and best-known early project was the
design of a full suite of system software for
the 709. This project, the Share 709 system
(SOS), included an assembler, monitor, job-
control system, and range of other compo-
nents. One of the projects was a standard
I/O system designed to provide assembly
subroutines for I/O operations on cards or
tape.19 In 1957, its designers were already
distinguishing between logical and physical
aspects of data storage in tape files, a key
concept for the decoupling of application
programs from specific hardware configura-
tions and file formats—although in fact the
SOS input, output, and buffering macros
provided little abstraction from the under-
lying hardware.20 Similar macros were
developed by Guide.

Companies interested in using the 709 for
administrative work founded the Share Data
Processing Committee, which met for the
first time on 2 October 1957 under the chair-
manship of Charles W. Bachman of Dow
Chemical.21 Members spent the first half of
the inaugural meeting trying to standardize
terms such as ‘‘card record’’ and ‘‘tape
file.’’22 In the second half, a report on the
Hanford effort was distributed to members.23

They ‘‘extensively discussed’’ this system and
resolved to use it as a prototype for an ‘‘input
generator’’ able to parse input data into a

History of DBMS

10 IEEE Annals of the History of Computing

specified file format. Gruenberger’s plea for
collaborative efforts had fallen on friendly
ears.

Two important projects followed. Surge,
under the leadership of Fletcher Jones (then
of North American Aviation, soon to cofound
Computer Sciences Corporation), was in-
tended to be a short-term project to build
something called the ‘‘704 Data Processing
Sort Routine’’ to provide data processing
capabilities on the aging IBM 704 computers
still used by most Share installations.24 The
new name reflected an increase in its scope
to ‘‘Sort, Update, Report Generate, Etcetera.’’
Although a 704 version did appear, Surge
evolved into an ambitious data processing
compiler project for the newer IBM 709 and
7090.25 The project was designed for nonspe-
cialist programmers, using a rigid check-off
format for coding rather than allowing
English-like statements along the Cobol
model. An initial 709/7090 version of Surge
was shipped in 1960 with an improved ver-
sion planned for 1962.26

The other project was 9PAC (709 package),
which was a direct evolution of the GE sys-
tem. According to Russell McGee, his data
processing group at GE Hanford aimed to
shift its work from an IBM 702 to the new
IBM 709. This shift meant reprogramming
every application. Thus, ‘‘only the general-
ized routines made recommendation of the
709 feasible.’’ Implementing them on the
709 would mean that ‘‘the same source files
and packets could be used on the new ma-
chine as on the old’’ (p. 59).13 But reworking
the generalized routines for the 709, with its
complex tape-control system, was itself a
major undertaking. At the second Data Pro-
cessing Committee meeting in November,
McGee gave an update on the project’s prog-
ress and reported that a rewrite for the 709
was planned.27 This reimplementation effort
soon became a Share project, a transition
McGee recalls took place at the tenth Share
meeting in Washington DC the next
February.13,28

The Share development process had a
great deal in common with today’s open
source software projects. A small volunteer
committee handled the main development
and specification tasks, while a series of
Share Secretarial Distributions sent to all
IBM 709 sites kept the broader user commu-
nity informed. These distributions mediated
the project’s discussion, disseminating a se-
ries of documentation drafts, requests for in-
formation, comments, and suggestions.

Starting a project was easy. As McGee
recalls, ‘‘creation and dissolution of these
committees and subcommittees were accom-
plished by simple word-of-mouth agreements
between the chairpersons and the Share offi-
cers’’ (p. 60).13 The hard part was persuading
Share member companies to devote program-
mer time to the effort, which McGee accom-
plished through ‘‘frequent trips to various
companies to tell my story to the brass.’’ He
succeeded in persuading Union Carbide to
provide office space to coordinate the Report
Generator project in its Long Island City fa-
cility. The 9PAC Subcommittee of the Data
Processing Committee was formally char-
tered only after a meeting of interested par-
ties in Los Angeles in May 1959 when the
project was largely finished.29

Like the earlier Hanford report genera-
tor, 9PAC took a set of input parameters
and file definitions as its input and pro-
duced a program ready for execution.
9PAC consisted of two separate but compat-
ible modules: a report-generator and a gen-
eralized file-maintenance system. The latter
incorporated capabilities for calculated
updates and modifications to the format
of existing files.30

According to a November 1958 progress
report the file maintenance portion of 9PAC
was being created by nine people working
at GE Hanford and was expected to be fin-
ished by the end of the year.31 Hanford’s
own 709 was not yet ready for use, and a
debugging trip to a Los Angeles installation
in January revealed ‘‘many errors,’’ which
McGee did not expect to be able to correct
until the end of that month when Hanford’s
709 would be available.32 Debugging took
longer than McGee anticipated (though not
as long as we might predict), and 9PAC
entered use in May 1959.

Although 9PAC was designed for tape stor-
age, it allowed the creation of hierarchical
relationships between records, a crucial ad-
vance over the GE system. Master records
(such as customers) could be associated
with the relevant detail records (such as
orders), which were simply stored on tape
immediately following their parent records.
This was a translation to tape storage of
punched-card practice.33 The 9PAC file for-
mat was surprisingly complex, allowing stor-
age of data dictionary information on a
separate dictionary tape or in a header affixed
to the beginning of each file. This included
field information for records on each level
of the hierarchy. It also allowed the storage

October–December 2009 11

of access permission information to restrict
the file reading or modification.34

Share members hoped to create still more
complex file management systems. 9PAC
and 709 Surge were seen as short-term solu-
tions, stop gaps until ambitious goals were
fulfilled. Surge, for example, was originally
announced as an interim 709-7090 commer-
cial data processing system. By August 1958,
a subcommittee of the Share data processing
committee had already drawn up plans for a
full data processing package for the IBM 709.
The specification described a memory resi-
dent task scheduler loading several pro-
cessing applications simultaneously and
providing communication between them.
The system was to provide instructions for
I/O and, when given appropriate field
descriptions, could extract, store, convert,
or move information from ‘‘fields addressed
symbolically by the program.’’35 Work on
this system does not seem to have progressed
further.

Another never-implemented proposal pro-
duced during 1959–1960 described the Ingen
system, a successor to 9PAC that would inte-
grate its report, file-maintenance, and sort-
program generation capabilities into a single
system able to generate programs combining
these three operations. According to Bach-
man (who was to lead this effort), its main
advance would have been to make it much
easier to reorganize record hierarchies. A hier-
archical tape system like 9PAC might sort the
file for orders by customer number, following
each customer record with a series of orders
for that customer sorted by date. Producing
a report listing all orders by date would create
a new file holding the same data but struc-
tured to have date rather than customer as
the top level of the hierarchy. Ingen would
have performed this kind of restructuring au-
tomatically, based on a metadata system that
understood that a particular record type
might be a master record in one context
and a detail record in another.36

As far as I am aware, none of these plans
for next-generation, tape-based file manage-
ment and report-generation systems came
to fruition. They were stymied by the inher-
ent limitations of tape storage and the rapid
adoption of disk technology during the
early 1960s by the kind of high-end com-
puter centers that might have contributed
to their development or benefitted from
their use. Still, the key requirements identi-
fied for these systems were the same needs
that drove the development of DBMSs in

the years that followed. Chief among these
were a memory resident data management
system able to support multiple applications
simultaneously and the flexibility to access
the same data in different sequences and
through different master/detail hierarchies,
depending on the job at hand.

9PAC, RPG, and Mark IV, 1960s
File management packages were so useful

for data processing work that they quickly
developed from user-supported projects
into standard elements within the system-
software suite supplied by computer ven-
dors. Because Cobol included special support
for defining file formats, its general adoption
in data processing from the mid-1960s on-
ward also simplified programmer labor.

Although IBM had not contributed to
9PAC’s creation, it quickly recognized the
system’s value and assumed responsibility
for maintaining and updating it. Russell
McGee dates this transfer to the summer of
1960 (p. 64).13 By 1961, an updated version
for the IBM 7090 (the transistorized successor
of the 709) was ‘‘currently being maintained
and improved by IBM Applied Program-
ming.’’37 9PAC became an official part of
IBM’s sprawling IBSYS OS suite for the
7090/7094 and thus a core part of its system
software offerings until the transition to the
third-generation System/360 range.

It wasn’t just these multimillion dollar
computers that needed standard file manage-
ment and report-generation systems. IBM
addressed the challenge directly when
launching its 1401 computer, the successor
to the humble 650 and the workhorse of
second-generation data processing during
the first half of the 1960s. As the first com-
puter marketed as a viable alternative to
conventional punched-card technology for
mainstream punched-card installations, the
1401 had to be easy to use for these simple
tasks. IBM supplied a new programming sys-
tem called Report Program Generator (RPG)
for this purpose.

According to Bill McGee, RPG was ‘‘pat-
terned after 9PAC.’’ It played a similar role,
to help ‘‘users migrate from punched card
equipment to electronic data processing,’’
but for the mass market of smaller data pro-
cessing installations rather than the largest
and richest computer centers served by
Share.38 Its design and capabilities were also
closely modeled on the earlier system. RPG
took four decks of cards as its input, each
using a simple programming notation to

History of DBMS

12 IEEE Annals of the History of Computing

describe the data file format, the desired
records and fields to be included from that
file, desired report format, or calculated fields
(such as interest accumulated). It generated
an efficient program that, when executed,
would produce the specified report. RPG’s
inputs mimicked the kind of configuration
work formerly handled by wiring the control
boards of punched-card machines, although
the calculation facilities were more flexible
than those offered with regular punched-
card equipment. RPG worked with data on
punched cards, in tape files, or (by the mid-
1960s) on disk. Its simplest version was us-
able on a computer with only 4,000 words
of memory. Like 9PAC, RPG could process
files in which master records were followed
by the relevant detail records. When translat-
ing this input to a report, RPG could insert
headings and subtotals as appropriate.39

RPG was an enormous success and was
soon offered for other machines. RPG II,
created for the System/360 machines,
replaced 9PAC on larger computers too.
Even today, in much-improved versions,
RPG is relied on by many thousands of corpo-
rate programmers.

File management systems also proved an
important niche for the nascent independent
software package industry. Mark IV—the
most successful product of the early indepen-
dent software industry—was a file manage-
ment system descended from report software
produced for the Douglas Aircraft Company.
Its origins have been discussed by its creator
John A. Postley.40 Like other early software,
Mark IV had its roots in user efforts and data
processing practices. The successful launch
of Mark IV as a standard product in 1968
rested on three years of development work
funded by a small group of initial users, who
in turn, relied on experience producing simi-
lar custom systems under contracts going
back to 1960. The direct influence of 9PAC
on Mark IV is unclear. Postley mentions no
specific systems as influences, but when Rus-
sell McGee first saw a paper on Mark IV he
‘‘thought someone had reinvented 9PAC’’
(p. 130).13 Mark IV was developed within
Informatics, a company cofounded by Francis
V. Wagner, who had chaired Share in 1957
and 1958. Walter F. Bauer, another founder,
had taken part in the October 1957 Share
Data Processing Committee meeting where
GE’s report generator was showcased. At the
very least, we can conclude that Share had
exposed them to the concept and value of
generalized reporting software.

The third generation, 1957–1969
The GE Hanford system and its descend-

ents 9PAC, RPG, and Mark IV were utility
programs with which ad-hoc reports could
be generated and file formats modified by
entering the appropriate parameters. This
was a fundamentally different approach
from traditional application programming,
in which calls to I/O macros (or later OS func-
tions) were embedded within custom pro-
grams. Generalized utilities worked well for
report generation and file maintenance, but
they supplemented rather than replaced ap-
plication programs. (The distinction blurred
a little as report-generation systems incorpo-
rated more powerful logical processing and
even the ability to invoke functions written
in traditional languages).

The DBMS was quite different, although
it built on the work of these packages. File
management systems were designed around
tape storage (although they were later
widely used with disk drives). They worked
efficiently when processing an entire file in
sequence. In contrast, DBMSs were designed
around disk storage. Instead of treating files
in isolation, they worked on a database
of multiple files, representing linkages
between individual records within those
files. Unlike file management systems, they
could be used by application programs,
remaining resident in memory to process
data operations.

Disk drives were first offered as a main-
stream option for most major computer sys-
tems in 1962, although they had been
available in a handful of IBM systems a little
earlier.41 By ordering the right items from the
catalog, it was possible to hold up to one bil-
lion characters of data on the disk drives con-
nected to a single large IBM computer. A
large disk system promised a single repository
into which business data could be placed and
from which they could be checked, retrieved,
and updated by many different application
programs. Together with the larger memories
of the newer computers, it heralded a gradual
shift away from the need to break administra-
tive jobs into dozens of separate runs. Disks
were called ‘‘random access’’ because infor-
mation stored on any part of the disk could
be rapidly retrieved, making it much easier
to create special reports or to build online
business systems. This contrasted with the se-
quential nature of tape storage, where it was
often necessary to play through the entire
tape to find a specific record. But random ac-
cess storage demanded a whole new set of

October–December 2009 13

programming techniques, analysis methods,
and conventions.

Random access was not entirely new, hav-
ing arrived with magnetic drums in the early
1950s, but it had previously been confined to
niche roles. As Arthur Norberg has shown,
this technology was pioneered by Engineer-
ing Research Associates in 1948 under a
Navy contract.42 IBM’s popular 650 used
a magnetic drum for its internal memory as
a cost-cutting feature. Drums drove early
interactive business systems such as the Uni-
vac File Computer and American Airlines’
Magnetronic Reservisor, and high-speed mag-
netic drums were a key feature of real-time
systems like the SAGE air defense system.

The 305 Random Access Method of
Acounting (Ramac) introduced by IBM in
1957 was the first computer to use disk stor-
age. Early magnetic disks were slower than
drums, but they were cheaper and stored
much more data. For the first time, it was
practical to build an administrative applica-
tion in which a data file was updated contin-
ually and could be queried as needed. Ramac
bundled a simple vacuum-tube computer
with five million characters of storage spread
over 50 discs spun at 1,200 revolutions per
minute. It could process a transaction every
one and a half seconds, which was about as
quickly as its printer could produce the
resulting output. All transactions were
punched onto cards, and the machine was
queried by feeding special trigger cards into
it. Square D, of Milwaukee, used a prototype
model to store stock levels for 24,000 inven-
tory items. Different decks of cards repre-
sented changes in desired stock levels and
order quantities as well as bills of materials
to alert the system of new orders received.
Another Ramac user, American Bosch, had
switched to ‘‘continuous flow’’ inventory ac-
counting. Transactions were posted as they
arrived in the office and operators could re-
quest special reports at any time.43

Ramac’s production run—around a thou-
sand machines—was much larger than the
number of special-purpose online systems
produced during the same 1957–1962 period.
The limits of early-1960s technology made
projects of this kind hugely expensive.
Unlike batch operation, where different jobs
were scheduled and run in succession, real-
time operation demanded the commitment
of an entire computer to a single application.
The night-shift was occupied with backups,
the loading and unloading of data, report
generation, compression, upgrades, and

testing.44 The best known of these systems,
Sabre, supported reservations for American
Airlines. The first full version relied on two
high-end 7090 mainframes, six of IBM’s
fastest drum units and 13 of its larger but
slower 1301 disk units. The control units for
operators were specially built (at a cost of
$19,000 each), and programming was com-
plex and expensive. American paid $30 mil-
lion for Sabre, and even that reportedly
failed to come close to covering IBM’s costs.45

By the mid-1960s, disks were common
options on many of the newly announced
third-generation systems,46 which repre-
sented a fundamental departure from earlier
practice in two key areas: complex OSs in-
tended for use without modification by
users and hardware features for interactive,
real-time operation. These promised to take
the innovations that had required so much
carefully crafted assembly language and cus-
tom hardware for a system like Sabre and
build them into the hardware and software
installed in a typical large data processing
center.

That proved harder than expected. Ran-
dom access promised almost instant record
retrieval, but although it was easy to order
the computer to read a particular part of a
disk (such as drive 4, platter 5, side 1, track
3, sector 15), there was no easy way to
jump straight to a particular record (e.g., cus-
tomer account 15274). Combing through the
whole disk to find this record destroyed the
benefits of random access. Some kind of
index was required so that the program
could look up where the specific record was
stored and then go straight to that location.
Programmers experimented with various
strategies to arrange and index data on
random-access devices. No single technique
was suitable for all situations, and most of
them were complicated to program. Any
method adopted would add substantially to
the program’s complexity; the storage space
needed on the disk; and the work required
to insert, delete, or update particular records.
New headaches arose when it was necessary
to make a backup copy of the disk, alter the
format in which records were stored, or
change (expand, shrink, or move) portions
of the disk array allocated to particular
programs.47

Having several programs share a single
disk array, each using different program
code to read and write records, caused an-
other set of problems. Among these were
the risk that an errant program might

History of DBMS

14 IEEE Annals of the History of Computing

scramble an area of a disk holding informa-
tion belonging to another, the overhead
imposed by writing several different versions
of the code required to handle complex
indexing techniques, and the certainty that
at some point the physical layout of the
disk storage would be changed (for example,
to shift a growing file to its own disk drive)
and all the programs would have to be modi-
fied at once.

The complexity of building online appli-
cations and working with random-access
storage held back the spread of these technol-
ogies into mainstream use during the 1960s.
A survey of managers with responsibility for
computer purchasing by the Wall Street Jour-
nal in 1968 shows that most computing was
still performed in batch mode.48 That same
year Business Automation magazine revealed
that disk drives had arrived in just 44% of
data processing installations. Even the transi-
tion from punched cards to tapes for file stor-
age was incomplete. Twenty-eight percent of
installations were still without a single tape
drive, although the median installation had
four. Punched cards retained their supremacy
for data input with 85% of the departments
still reliant on the simple keypunch as the
main source of data.49

Random-access software: 1963–1969
Computer vendors readied new software

to help their customers manage the enor-
mous increase in complexity associated
with random-access storage. By the end of
the 1960s, every major computer manufac-
turer offered at least one such package.50

These systems were intended to speed pro-
gram development, reduce maintenance
costs, shield application programs from the
consequences of changes in the physical
disk layout, and make it easier to selectively
retrieve records based on their contents.
They were usually based on the expansion
of systems originally produced for use within
a single organization. Although they would
later be called DBMSs, the earliest of them
predated that term and were known by a
number of different names.51

The most innovative, and influential, of
these systems was GE’s IDS, created by
Charles Bachman. IDS began its life about
1963, as part of an effort known internally
as Integrated Systems Project II. Its goal was
the production of an integrated system for
production control, flexible enough to be
easily customizable by GE’s many depart-
ments but powerful enough to give rapid

results to queries on production scheduling
and inventory levels while automatically
placing orders and calculating the optimum
order quantities. The resulting system, some-
times (but not always) called the Manufac-
turing Information and Control System
(MIACS), relied on IDS to handle its data stor-
age and retrieval needs.52 In the early 1960s,
many companies launched ambitious efforts
to produce integrated systems tying together
different business functions.53 These systems
were often called management information
systems (MISs). Thanks to Bachman’s ingenu-
ity, the MIACS project was a rare success in
this unhappy area.54

Manufacturing involves assembling multi-
ple components into larger parts, which
themselves usually serve as components in a
larger assemblage. The ‘‘parts explosion prob-
lem’’ made it particularly important for IDS
to support the creation of links between dif-
ferent kinds of records. Although earlier sys-
tems had supported the idea of subrecords,
stored sequentially and hierarchically within
master records, IDS was more flexible. This
generalized concept of linking record types,
known later as the network data model, was a
major influence on later systems.

IDS was designed from the beginning for
use with disk drives. It took over an entire
GE 225 computer, providing basic OS func-
tions, including an early implementation of
paged virtual memory to squeeze out maxi-
mum performance from the computer’s
8,000-word memory. The task scheduler itself
relied on IDS to store data, making it the
foundation for the OS. MIACS application
programs (written in GE’s GECOM language)
used simple instructions to navigate through
the relationships between records and to
store, get, modify, or delete individual
records. In the first IDS implementation, a
preprocessor replaced these special instruc-
tions with the appropriate strings of assembly
instructions (as in traditional systems of I/O
macros). Efficiency concerns inspired a differ-
ent approach, where IDS performed this
expansion by interpreting the requested
operation according to metadata about the
record type involved. This part of IDS
remained resident in memory, waiting to
deal with data requests from the application
programs.54

Similar to file management programs, IDS
stored metadata to describe file formats. This
let it isolate application code from some of
the details on how data was physically stored
on the disk. Using standard routines to

October–December 2009 15

manipulate data made it easier to reconfigure
the file-format or hardware-configuration
details without significant changes to appli-
cation source code. File formats were no lon-
ger specified within application programs.
This separation ultimately resulted in a new
role, the database administrator (DBA). How-
ever, abstraction and efficiency are some-
times antithetical. IDS was remarkably
efficient, but it delivered only limited ab-
straction compared with modern systems.
Most notably, its instructions worked one
record at a time, and programmers explicitly
navigated through files to locate related
records. Its separation of application code
from physical storage was incomplete. E.F.
Codd, creator of the relational database
model, noted that application programs in
IDS had to be explicitly modified to make
use of new indexes added by file designers.55

IDS was used at several sites internally
within GE. An optimized version was issued
by International General Electric for its 225
system and supplied to customers including
Mack Truck and Weyerhauser. With the ad-
vent of the third-generation GE 400 and
600 series computers, a new version of IDS
was produced, in which application pro-
grams were written in the now standard
Cobol rather than GECOM. These versions
were produced by the systems programming
groups for the new machines. These standard
IDS implementations lacked transaction pro-
cessing capabilities—IDS was loaded and
unloaded from memory along with the appli-
cation programs using it.

A special version of IDS was in use at
Weyerhauser, in its Weyerhauser Compre-
hensive Operating System (WEYCOS). The
first version of WEYCOS handled inventory
control and order processing. It worked in
Tacoma, Washington, on a GE 225, which
was hooked up to a Datanet 30 computer
interfaced with teletype machines across the
country to accept input data and requests
for reports directly from sales offices, mills,
and warehouses. Requests were dumped
onto disk and processed by IDS’s integral
task scheduler, the problem controller. Partici-
pants recall that this system was fully opera-
tional by 1965.

A more ambitious system, which Bach-
man calls WEYCOS 2, was developed for the
GE 600 computer from 1966 to 1968. This,
he believes, was the first multiprogramming
database system because it let multiple appli-
cation programs run simultaneously, each
executing its own transactions against a

shared database. This meant adding capabil-
ities to lock records and detect deadlock con-
ditions. The system was also intended to
support multiple processors with shared
memory, although this goal was eventually
abandoned.13,54

IDS was not the only package of its kind.
The first version of what eventually became
IBM’s Information Management System
(IMS) was produced in 1965 by IBM in collab-
oration with North American Rockwell to
handle the proliferation of parts involved in
the Apollo program.56 The original version
of this application, known as the Generalized
Update Access Method, ran on an IBM 7010
computer and used a specialized hierarchical
file management system to store its data on
disk. IBM and NAA also developed a system
called Remote Access Terminal System
(RATS) so that interactive application pro-
grams could be accessed via terminals.

In 1966, work began on a new version cre-
ated to run as an application under OS/360
on the new System/360 machines, and it
was this version that IBM distributed to
other customers from 1968 onward.57 Like
IDS, IMS was used by application pro-
grammers, using packaged procedures to
embed data-handling capabilities in their
code. The OS/360 version allowed one mem-
ory resident copy of IMS to simultaneously
service the data needs of multiple application
tasks.58 It went on to great commercial suc-
cess in the 1970s. (See the ‘‘The Commercial-
ization of Database Management Systems,
1969–1983’’ article in this issue for more
details.)

IMS was not the only IBM data manage-
ment product of the late 1960s. In the mid-
1960s, members of the Share user group
devoted far more time in their sessions and
workshops to discussing the forthcoming
Generalized Information System (GIS). This
was expected to support file manipulation,
reporting, full text indexing, interactive
querying, and batch updates. Its actual capa-
bilities were the subject of much speculation
prior to its release.59 Although GIS was part
of IBM’s product line in the 1970s, its actual
use seems to have been as a query language,
and it did not achieve much success as a free-
standing product.

GE offered an improved version of IDS to
users of its computers, and IBM did the
same with IMS. During the 1960s, computer
vendors bundled their software with hard-
ware, using it as a free promotional tool to
entice users into buying computers. There

History of DBMS

16 IEEE Annals of the History of Computing

was essentially no market for systems of this
kind as commercial products in the 1960s.
The first successful independent product
was Cincom’s Total, which was probably
released only in 1970—though some claims
have put this as early as 1968.60

SDC and the database concept, 1960s
To understand the DBMS’s evolution, we

must now step sideways, from the world of
software to the world of ideas. IDS and IMS
both predated the idea of the DBMS. They
did not, however, predate the ‘‘data base’’
concept itself, which is older but was initially
separate from file management technology.
(One of my earlier articles explored this
process, so I will not dwell on the details
here.61) The most relevant point is that
‘‘data base’’ was originally a fashionable but
vaguely defined phrase floating around
cutting-edge, interactive computing projects.
It was only gradually associated with the spe-
cific technologies that became known as the
DBMS.

In fact, the database concept originated
among the well-funded Cold War technolo-
gists of the military command and control
world. The Oxford English Dictionary
records an early use in 1962 by the System
Development Corporation, possibly in con-
nection with the famous SAGE antiaircraft
command and control network. SAGE was
far more complex than any other 1950s com-
puter project and was the first major real-
time system—responding immediately to
requests from its users and to reports from
its sensors.62 SAGE (and later command and
control systems from SDC) had to present
an up-to-date, consistent representation of
the various bombers, fighters, and bases to
all its users through various display systems.
The ‘‘database’’ held the shared data collec-
tion on which all these views were based.

Looking to extend its business beyond this
niche, SDC identified ‘‘computer-centered
data base systems’’ as a key application of
time-shared systems—hosting (in collabora-
tion with military agencies) two symposia
on the topic in 1964 and 1965.63 These
were crucial in spreading the database concept
to high-ranking military officials, business
data processing celebrities, and corporate
and academic researchers.

The phrase carried some specific associa-
tions, based on the particular characteristics
of firms like SDC and of military command
and control projects. One of these asso-
ciations was with the idea of real-time

operation—the database would be constantly
and, if possible, automatically updated with
current information gathered from different
sources. It was also assumed that, as in
SAGE, a database could be ‘‘interrogated’’ in
real time by its users, answering questions
interactively within seconds. In addition,
the database would be shared among many
different programs, each one using only a
subset of the overall information contained
within it. SDC used its database symposia to
showcase its own online systems developed
with military money. These led, later in
the decade, to innovative but unsuccessful
commercial offerings like Time-Shared Data
Management System (TDMS), which were in-
tended to allow nonprogrammers to create
database structures, load data into them,
and then issue queries and retrieve their
results online.64

Reporting on the event in Datamation,
Robert V. Head observed that databases had
already unleashed the ‘‘biggest single strike’’
of new jargon ‘‘since the great time-sharing
gold rush of 1963.’’ He thought it ‘‘possible
that users, led by the military, will surrender
to these data base systems without a shot
being fired in anger.’’65

Until about 1968, the ‘‘data base’’ was
much discussed but little realized. This con-
cept remained fairly distinct from the practi-
cal world of file management systems,
report generators, and disk-oriented pack-
ages such as IDS and IMS. It was supposed
to be used interactively online, could
be used by nonspecialists, and was closely
associated with the idea of a single huge reser-
voir of corporate information.53 In contrast,
file-maintenance and report-generation sys-
tems and their more complex descendents
such as IDS and IMS were used primarily by
programmers to reduce development and
maintenance costs for routine data process-
ing applications.

DBMSs and DBTG, 1965–1973
Combining the database and the file man-

agement system created the DBMS. Its idea
was shaped and promoted through the
work of a body called the Data Base Task
Group (DBTG), an ad-hoc committee of the
Codasyl industry group. Codasyl focused on
creating data processing standards, and it is
best known for its work designing and main-
taining the Cobol programming language
used for most business application program-
ming from the late 1960s to the early
1990s. Its creation was prompted by the

October–December 2009 17

realization within Codasyl that Cobol, while
doing a great deal to standardize data storage
on tape systems and to separate record defini-
tions from program logic, was entirely inade-
quate when faced with the challenge
of random-access, disk-based storage. The
committee’s members were drawn from com-
puter vendors, universities, consulting com-
panies, and a few large companies making
heavy use of computers in their own business
operations. IDS creator Bachman was an
early committee member and promoted the
ideas he developed for IDS as the basis for
its work.

When it was formed in October 1965, the
DBTG had originally been called the List Pro-
cessing Task Force (its name was changed in
1967).66 W.G. Simmons of US Steel was the
group’s founder and initial chair. It moved
slowly its first few years; an official history
included in a later report noted that ‘‘because
the membership of the group changed con-
stantly a major amount of the DBTG’s efforts
was directed toward listening to and studying
the views of as many persons as possible,’’
conceding that this ‘‘affected the progress
rate of the group’’ (section 1.6).67

As its name suggests, the DBMS was
intended to be a new kind of product,
extending the capabilities of existing file
management packages to support the ad-
vanced, online, interactive capabilities and
huge integrated data stores associated with
the database concept. The DBTG’s purpose
was to define the capabilities of these new
systems and develop new standards for
them.

In early 1968, the group presented a draft
proposal, including a summary of Bachman’s
IDS, to the Cobol Language Subcommittee.
In response, the subcommittee approved
the resolution that ‘‘COBOL needs the Data
Base concept.’’ By January 1969, Appollon
Metaxides of Bell Labs had taken over as
chair, formalizing the committee’s member-
ship and focusing its work on the production
of functional and language specifications for
Cobol’s new capabilities (section 1.7).67 An
initial public report specifying a Data De-
scription Language (DDL) and Data Manipu-
lation Language (DML) was completed in
October 1969 and published shortly after-
ward as a draft for public comment.68 The
group received 179 formal responses.67 Its
final recommendations were published in
1971 and endorsed by its parent group with-
in Codasyl (the Programming Languages
Committee).69

Another Codasyl group, the Systems Com-
mittee, was chaired by RCA’s William Olle,
who did important work in promoting the
DBMS concept.70 The committee worked on
examining the capabilities of existing gener-
alized DBMSs, issuing a hefty interim report
in 1969.71 It surveyed the strengths and
weaknesses of existing systems such as GID,
IDS, Mark IV, and TDMS and began the at-
tempt to identify a full list of desirable char-
acteristics. It already included the ‘‘data
structure class’’ concept (equivalent to
the later data model), which it used to char-
acterize IDS as hierarchical and IMS as a
network—terms that stuck. Despite lobbying
by firms such as GE to get their own systems
adopted as the basis for a new standard, the
group decided that no single existing system
came close to providing the range of features
required. A second report, issued in 1971,
provided additional material, coverage of
new systems, and analysis against the
DBTG’s proposal.72 These reports did a great
deal to popularize the term ‘‘database man-
agement system’’ as a category for products
such as IMS, GIS, and IDS, which had not
previously had a standard label.

The DBTG’s specific proposals were con-
troversial at the time, and several Codasyl
members opposed them (including main-
frame suppliers IBM, RCA, and Burroughs).73

The IBM user groups Share and Guide had
been conducting a joint database specifica-
tion project in opposition to Codasyl, begin-
ning around 1969, with the creation of a
wish list for future systems.74 The group was
active until at least 1973 and presumably
influenced Share’s board vote to oppose the
adoption of the Codasyl proposals as indus-
try standards.75 No complete implementa-
tion of the DBTG specification was ever
produced, and while some successful systems
of the 1970s claimed to be heavily influenced
by Codasyl, many others did not.

Codasyl’s project on DBMS languages were
not as successful as its work on Cobol in
setting industry standards. In other ways,
however, its work proved influential. The
DBTG’s work provided both a broad concep-
tual outline for the DBMS and detailed draft
specifications for two specific parts of the
overall system: the DDL for defining the data-
base structure and the DML for accessing the
data from within Cobol. It also outlined a way
of giving individual programs access to selec-
tive or simplified versions of the full database.

The DBTG provided a new vocabulary
for the field. It standardized terms such as

History of DBMS

18 IEEE Annals of the History of Computing

Tom Haigh
Callout
This is a typing error - IMS and IDS should be reversed.

record, set, and database and added some
new ones, including schema (which remains
ubiquitous today) to describe the logical for-
mat of data within the database, and sub-
schema. A subschema (similar to what
would be called a view in today’s SQL) let
different users and applications see only a
portion of the overall database, allowing
selective access to records and potentially
shielding the application from changes in
the underlying schema—this was a property
referred to as data independence.

The DBTG separated the DML that pro-
grammers used to add, delete, update, and re-
trieve particular records from the DDL used
by the DBA to define the database’s logical
structure. That distinction remains funda-
mental in the database field to this day. By
May 1969, Codasyl had realized that the
DDL was not Cobol specific and could be
used to define data structures for use with
other languages such as Fortran or PL/I.76 Al-
though the DDL was to be a new and univer-
sally applicable language, the DML took the
form of a programming-language-specific
set of additions seamlessly integrated into
that language’s existing instructions. This re-
alization led Codasyl to split the DBTG’s
work in two following approval of its 1971 re-
port. The DML Task Group, later renamed
the Data Base Language Task Group, was re-
sponsible for reworking the proposed addi-
tions to Cobol into a form suitable for
publication in Codasyl’s Journal of Develop-
ment as an official standard in 1973.77 The
second group, the Codasyl DDL Committee,
was established as a standing committee to
publish and enhance the standard DDL.67

These standardization efforts failed to set a
marketplace standard, in part because of
IBM’s unwillingness to commit to the net-
work concepts inherent in the Codasyl
model while its own flagship IMS product
retained a hierarchical approach.78

Its final contribution was to insist that a
standard DBMS allow more complex linkages
to be established between different files (or
record types) within the same database. This
favored Bachman’s idea of allowing networks
of relationships between record types over
the more restrictive hierarchical approach
used by systems such as IMS. The DBMS
was intended to make these relationships
(or sets) as explicit and enforceable as previ-
ous file management systems had made the
specification of fields within an individual
file. Because most of the logic to maintain
these relationships had previously been

hidden within individual programs, placing
relationships inside the DBMS along with
the data ensured that all application pro-
grams and user requests would have access
to them.

This conceptual framework for the DBMS
ultimately proved more influential than the
DBTG’s detailed proposals. When the Coda-
syl work on databases is mentioned at all
today, it is usually as a synonym for the net-
work data model. Since IDS, a commercial
product, used this model prior to the
DBTG’s establishment, this would seem a
rather limited contribution to history. In
fact, the DBTG created—or at the very least,
widely disseminated for the first time—the
very idea of the DBMS.

Most of the DBMS characteristics stipu-
lated by the DBTG had been demonstrated
by at least one system. The novelty was its in-
sistence that future systems must combine
them all. A DBMS was expected to provide
the efficient operational access for applica-
tion programs and networked record-linking
features that existing systems such as IDS spe-
cialized in. However, it was also expected to
allow nonprogrammers to use a simple, spe-
cially tailored interface to query and update
the database directly—the province of sys-
tems such as Mark IV. Likewise, a DBMS
was expected to support batch operation
and interactive online usage, previously
offered only by specialized systems such as
SDC’s failed TDMS, with equal felicity.72 In
practice, most commercial systems of the
1970s failed to provide strong coverage across
this spectrum of capabilities, but over time
(and with the addition of external transaction-
processing systems such as CICS, they evolved
toward the goal.

Conclusions
In 1973, Bachman was awarded the ACM’s

Turing Medal, the most prestigious award in
computer science. The citation singled out
his creation of the IDS system and his work
with Codasyl. This award was in itself an
important event, representing a new level
of acceptance among computer science
researchers of database problems as intellec-
tually respectable subjects of inquiry. The
event is better remembered, however, for
Bachman’s speech.79 Entitled ‘‘The Program-
mer As Navigator,’’ it developed the idea
that the shift to DBMS technology repre-
sented something akin to the Copernican
revolution, in that the work of programmers
would now revolve around the database

October–December 2009 19

rather than computer hardware. Although
this prophecy took several decades to come
true, knowledge of database systems has
now become a fundamental requirement for
virtually all administrative applications pro-
gramming, systems analysis, and advanced
Web design work.

The DBMS concept advanced by Codasyl
proved far more important and longer lasting
than the particular methods for its realization
put forward by the DBTG. Although the com-
mercialization and adoption of DBMS tech-
nology posed its own challenges (something
elaborated on in ‘‘The Commercialization of
Database Management Systems, 1969–1983,’’
a companion article I wrote with Tim Bergin
in this issue), it ultimately cut the cost of ap-
plication development and made the main-
tenance and adaptation of administrative
systems much easier. During the 1970s, the
shift of mainstream data processing applica-
tions to random-access storage and online
operation introduced additional complexity
that would have overwhelmed most devel-
opment teams without the adoption of
DBMSs and other new kinds of system soft-
ware, such as online transaction-processing
packages.

The database concept was originally rather
vague and associated with ideas such as on-
line access, totally integrated MISs, flexibly
structured data, and the interactive defini-
tion of data formats by users. These ideas,
some of which reflected concepts from the
field of information retrieval, played little
part in the leading commercial systems of
the 1970s. Instead, the acceptance of the
DBTG concept of a DBMS implied a more
concrete vision of the database—basically a
body of electronic data that could be man-
aged by a DBMS.

The DBMS, as realized through software
modeled on existing systems such as IDS,
was influenced by a stream of practice
going back through 9PAC to the tabulating
machine era. It embodied the highly struc-
tured, administrative transaction-oriented
view of information held by data processing
staff. It was well suited to the bureaucratic
records for things such as payroll administra-
tion because each record included the same
pieces of data (years of service, Social Security
number, hourly rate, overtime status, and so
on). Subsequent DBMSs based on the rela-
tional model continued to incorporate the
same assumptions about information as ear-
lier file management systems. They made it
simple and efficient to update information

and so are well suited to administrative
transactions where records are constantly
updated. Only with the rise of data ware-
housing in the 1990s did attention return
to huge, integrated data stores optimized for
analysis and managerial querying. Likewise,
only with the rise of the Web did mainstream
attention turn to the indexing and manage-
ment of huge amounts of loosely structured
data.

Over the past half century, we have been
exposed to a great deal of talk about the in-
formation age, information revolution, infor-
mation society, information technology, and
so on, but this story shows that each kind of
information technology embeds its own def-
inition of information. We do not deal with
information in any pure, abstract form. We
deal with particular technologies, able to in-
form us in particular ways. Like all technolo-
gies, they make some things easy and other
things hard. Software technologies such as
the DBMS are generalized from prevalent
practices and around the material constraints
of available hardware. They themselves be-
come part of the material infrastructure that
shapes the development of future applica-
tions and the evolution of subsequent
practice.

Acknowledgments

This article was written during my time as a
fellow of the Center for 21st Century Studies
at the University of Wisconsin—Milwaukee
and as a participant in the European Science
Foundation’s Software for Europe project.
I thank Mary Ellen Bowden for encouraging
me to begin this research, Boyd Rayward for
his close attention to my earlier work on
this topic, David Gugerli and his group at
ETH for inviting me to spend a week there
discussing database history, Rick Snodgrass
and ACM SIGMOD for funding my oral his-
tory interview with Charles W. Bachman,
and Burt Grad and the Computer History
Museum for supporting my oral history inter-
view with Robert L. Patrick. Some material
here is adapted from the 2002 Proceedings of
the Conference on History and Heritage of Scien-
tific and Technological Information Systems (In-
formation Today, 2004).

References and notes
1. The development of the mainframe DBMS

market is explored in M. Campbell-Kelly, From

Airline Reservations to Sonic the Hedgehog: A

History of the Software Industry, MIT Press, 2003,

History of DBMS

20 IEEE Annals of the History of Computing

pp. 145–149, 184–191. A short history focusing

on the role of public funding in the emergence

of the relational model is found in National

Research Council, Funding A Revolution: Govern-

ment Support for Computing Research, chapt. 6,

Nat’l Academy Press, 1999.

2. Many database textbooks include a few pages

on the development of database theory along

with their introductory definitions (for example,

R. Elmasri and S.B. Navathe, Fundamentals

of Database Management Systems, Benjamin/

Cummings, 1989, does this well), but this can

mean little when stripped of its historical con-

text. The closest thing to a detailed history is a

quarter-century old technical primer by J.P. Fry

and E.H. Sibley, ‘‘Evolution of Data-Base Man-

agement Systems,’’ ACM Computing Surveys,

vol. 8, no. 1, 1976, pp. 7–42, 19–29. On the

technical side, detailed comparisons of early

systems are given in C.J. Byrnes and D.B. Steig,

‘‘File Management Systems: A Current Sum-

mary,’’ Datamation, vol. 15, no. 11, 1969,

pp. 138–142; Codasyl Systems Committee, ‘‘Fea-

ture Analysis of Generalized Data Base Manage-

ment Systems,’’ ACM Press, 1971; L. Welke,

‘‘A Review of File Management Systems,’’ Data-

mation, vol. 18, no. 10, 1972, pp. 52–54; and

D.B. Steig, ‘‘File Management Systems Revisited,’’

Datamation, vol. 18, no. 10, 1972, pp. 48–51.

3. T. Pinch and R. Swedberg, eds., Living in a

Material World, MIT Press, 2008.

4. T. Hughes, Networks of Power: Electrification in

Western Society, 1880–1930, Johns Hopkins

Univ. Press, 1983.

5. Administrative computing during this era is

discussed in T. Haigh, ‘‘The Chromium-Plated

Tabulator: Institutionalizing an Electronic

Revolution, 1954–1958,’’ IEEE Annals of the

History of Computing, vol. 23, no. 4, 2001,

pp. 75–104.

6. R.F. Osborn, ‘‘GE and UNIVAC: Harnessing the

High-Speed Computer,’’ Harvard Business Rev.,

vol. 32, no. 4, 1954, pp. 99–107.

7. A.D. Meacham and V.B. Thompson, eds., Total

Systems, American Data Processing, 1962,

p. 153.

8. By the 1940s, most punched cards included 80

columns of data, each one of which coded a

single number or letter. Information within each

card was grouped into fields, each occupying a

fixed width within each record card. Consider a

factory using punched cards to process its pay-

roll. Some fields needed only one column—for

example, sex (M or F). Other fields, such as last

name, might be assigned a dozen columns.

Each record would be punched onto one, or in

some cases several, of the cards in the deck.

The complete deck representing all the factory

workers was known as a file, by analogy with

conventional paper records. Each record card

within the file had to follow exactly the same

layout of fields, and to process a particular job,

the machine operators had to rewire each

machine’s control panel (such as sorter, collator,

or tabulator) to reflect this specific field layout.

Many jobs involved ‘‘merging’’ information

from several files—for example, combining

wage information from the master file of per-

sonnel cards with the attendance information

punched onto a weekly punched card by an

IBM time clock. See J.J. McCaffrey, ‘‘From

Punched Cards to Personal Computers,’’ John J.

Mc Caffrey Memoirs, CBI 47, Charles Babbage

Inst., Univ. of Minnesota, 10 June 1989.

9. IBM, ‘‘IBM 705 Generalized Sorting Program

Sort 51 Bitsavers,’’ 1956; www.bitsavers.org/

pdf/ibm/705/32-6831_705_Generalized_

Sorting_Pgm_1956.pdf. The logic behind a

total of 17 runs is 15 sorting runs of half tapes

plus final and initial runs of a full tape. The pro-

gram was designed to store a maximum of four

records in memory at once, which explains

both its dismal performance and the relatively

large maximum record size of up to 2,494

characters. A more complex program presented

with a smaller maximum record size would

have been able to sort short record sequences

within core memory, reducing the number of

sorting passes required through the tape.

Sorting methods of this era are explored in

E.H. Friend, ‘‘Sorting on Electronic Computer

Systems,’’ J. ACM, vol. 3, no. 3, 1956,

pp. 134–168.

10. D.D. McCracken, H. Weiss, and T.-h. Lee, Pro-

gramming Business Computers, John Wiley &

Sons, 1959, pp. 178–204.

11. IBM, ‘‘IBM Electronic Data-Processing Machines

Type 705 Preliminary Manual of Operations

(22-6627-4) Bitsavers,’’ 1957; http://www.

bitsavers.org/pdf/ibm/705/22-6627-4_705_

Oper_Jun57.pdf. Other specialized control units

hooked up to the same tape drives could trans-

fer data between tapes and cards or print with-

out involving the main computer.

12. For contemporary system documentation, see

W.C. McGee, ‘‘Generalization: Key To Suc-

cessful Electronic Data Processing,’’ J. ACM,

vol. 6, no. 1, 1959, pp. 1–23, and R.C.

McGee and H. Tellier, ‘‘A Re-Evaluation of

Generalization,’’ Datamation, vol. 6, no. 4,

1960, pp. 25–29.

13. R.C. McGee, My Adventures with Dwarfs: A Per-

sonal History in Mainframe Computers, CBI,

2004.

14. ‘‘Share Reference Manual for the IBM 704,’’

Share records, CBI 21, 1958.

October–December 2009 21

Tom Haigh
Callout
This is the wrong title! Should be "Verbatim Transcript of the 9th Meeting of Share, October 3, 1957".

15. Russell McGee is not to be confused with W.C.

McGee, who headed the scientific computing

group at Hanford during the same period.

I quote both in this article.

16. ‘‘Verbatim Transcript of the 9th Meeting of

Share, October 3, 1957, Morning Session,’’

Share records, CBI 21, 1957, p. 49.

17. This group’s contributions included a version of

the powerful Autocoder assembler. C.J. Bashe,

et al., IBM’s Early Computers, MIT Press, 1986,

pp. 345–347, 355–356.

18. Share is discussed, with particular reference to

SOS, in A. Akera, ‘‘Voluntarism and the Fruits of

Collaboration,’’ Technology and Culture, vol. 42,

no. 4, 2001, pp. 710–736.

19. Progress on implementation of the I/O package is

discussed in J. King, ‘‘Progress Report on 709

Input-Output, SSD 017,’’ Share records, 1955–86,

NMAH 567, Archives Center, Nat’l Museum of

Am. History (NMAH), Behring Center, Smithso-

nian Inst., 19 Aug. 1957. SOS eventually

included a macro-based input system known

as INTRAN and an output system known as

OUTRAN as well as support for buffering and

transmission of I/O in its memory resident

monitor programs. IBM, ‘‘SOS Reference Man-

ual (incl Distributions 1 to 5) Bitsavers,’’ 1961;

http://www.bitsavers.org/pdf/ibm/share/SOS_

Reference_Manual_Jun61.pdf.

20. C. Mock, ‘‘The MockDonald Multiphase System

for the 709, SSD 19,’’ Share records, 1955–86,

NMAH 567, 9 Sept. 1957.

21. C.W. Bachman, ‘‘Report of the Share Data Pro-

cessing Committee, October 2, SSD 020,’’

Share records, 1955–86, NMAH 567, 1957.

22. This yielded the DP glossary in C.W. Bachman,

‘‘Share Data Processing Committee: Selected

Glossary, SSD 022,’’ Share records, 1955–86,

NMAH 567, 18 Nov. 1957. This glossary

included the concept of a key as a unique iden-

tifier used to locate a record.

23. A revised version of this material was published

in W.C. McGee, ‘‘Generalization: Key To Success-

ful Electronic Data Processing,’’ J. ACM, vol. 6,

no. 1, 1959, pp. 1–23, which remains an excel-

lent introduction to the practices of this era.

24. W. Orchard-Hays, ‘‘Letter to Bill Dobrusky,

March 16, SSD 049,’’ Share records, 1955–86,

NMAH 567, 1959. In the letter, Orchard-Hays

says, ‘‘The 704 Data Processing Sort Routine . . .

is now known as SURGE.’’ Surge has rather a

low historical profile, and citations in surveys are

generally to an undated document, ‘‘SURGE: A

Data Processing Compiler for the IBM 704,’’

issued by North Am. Aviation. This might be the

same document archived as R. Paul and W. Daven-

port, ‘‘Untitled SURGE Manual for IBM 704,’’

Share records, CBI 21, ~1959.

25. Early objectives of and specification for the 709/

7090 Surge project are discussed in B. Went,

‘‘Minutes of 709-7090 SURGE Meeting, Sep-

tember 14–16, 1959 - Columbus Ohio, SSD

59,’’ Share records, 1955–86, NMAH 567,

1959, and E. Austin, ‘‘Minutes of 709-90 SURGE

Subcommittee Meeting, December 7–9,’’ Share

records, 1955–86, NMAH 567, 1959.

26. L.F. Longo, ‘‘SURGE: A Recoding of the COBOL

Merchandise Control Agreement,’’ Comm. ACM,

vol. 5, no. 2, 1962, pp. 98–100.

27. C.W. Bachman, ‘‘Share Data Processing Com-

mittee Meeting, November 21–22, 1957, Mid-

land, Michigan, SSD 023.’’

28. Share minutes report that Russell McGee made

another progress report and also note his chair-

manship of a newly formed ‘‘709 Report and

File Maintenance Generator Subcommittee.’’

C.W. Bachman, ‘‘Report of Share Data Process-

ing Committee,’’ Share, ed., Proc. 10th Meeting

of Share, 1958, pp. 51–55.

29. R.C. McGee, ‘‘Letter to Jerry Koory, SSD 054,’’

Share records, 1955–86, NMAH 567, 23 June

1959.

30. Specifications for the file-maintenance system

are in R.C. McGee, ‘‘Preliminary Manual for the

Generalized File Maintenance System, SSD

046,’’ Share records, 1955–86, NMAH 567,

23 Dec. 1958. Their shared file structure is

described in R.C. McGee, ‘‘The Structure of a

Standard File, SSD 045,’’ Share records, 1955–

86, NMAH 567, 1958.

31. R.C. McGee, ‘‘Progress Report on Generalize

Routines, SSD 040,’’ Share records, 1955–86,

NMAH 567, 7 Nov. 1958.

32. R.C. McGee, ‘‘Letter to Charles E Thoma, Janu-

ary 21, SSD 046,’’ Share records, 1955–86,

NMAH 567, 1959.

33. With conventional punched-card machines, as

long as the same part of the card was always

used to code for a customer number, it was

easy to use sort and merge operations to create

a card file in which each customer record was

followed immediately by cards giving informa-

tion on each order placed by that customer.

34. R.C. McGee, ‘‘The Structure of a Standard File,

SSD 045,’’ Share records, 1955–86, NMAH

567, 1958.

35. J.T. Horner, ‘‘709 Data Processing Package, SSD

035,’’ Share records, 1955–86, NMAH 567, 1958.

36. C.W. Bachman, ‘‘INGEN Proposal,’’ Charles W.

Bachman, Papers, CBI 125, May 1959 or 1960.

Bachman clarifies INGEN’s fate in C.W. Bach-

man, ‘‘Oral History Interview by Thomas

Haigh,’’ ACM Oral History Interviews collection,

25–26 Sept. 2004.

37. IBM, ‘‘IBM 7090 Programming Systems Share

7090 9PAC Part 1: Introduction and General

History of DBMS

22 IEEE Annals of the History of Computing

Principles (J28-6166) Bitsavers,’’ 1961; http://

www.bitsavers.org/pdf/ibm/7090/J28-6166_

9PAC_Part1_1961.pdf.

38. W.C. McGee, ‘‘Book Review: Installing

Electronic Data Processing Systems,’’

Computing News, vol. 5, no. 115, 15 Dec.

1957, pp. 12–14.

39. The discussion of RPG’s capabilities is based on

IBM, ‘‘Report Program Generator: IBM 1401

Card and Tape Systems, J24-0215-2 Bitsavers,’’

1965; http://www.bitsavers.org/pdf/ibm/140x/

J24-0215-2_cardTapeRPG.pdf, and IBM, ‘‘Report

Program Generator (On Disk) Specifications,

IBM 1401, 1440, and 1460, C24-3261-1 Bitsa-

vers,’’ 1964; at http://www.bitsavers.org/pdf/

ibm/140x/C24-3261-1_1401_diskRPG.pdf. Be-

cause of its apparently mundane nature, RPG

has received a lot less historical attention than

its usage would justify. Discussion in the sec-

ondary literature seems limited to M. Campbell-

Kelly and W. Aspray, Computer: A History of the

Information Machine, Basic Books, 1996, p. 133,

and Bashe et al.’s IBM’s Early Computers (MIT

Press, 1986, pp. 479–480).

40. On Mark IV, see J.A. Postley and H. Jackobsohn,

‘‘The Third Generation Computer Language:

Parameters Do the Programming Job,’’ Data

Processing, vol. 11, Data Processing Manage-

ment Assoc., 1966, pp. 408–415; R.L. Forman,

Fulfilling the Computer’s Promise: The History of

Informatics, 1962–1982, Informatics General,

1984; and J.A. Postley, ‘‘Mark IV: Evolution of

the Software Product, a Memoir,’’ IEEE Annals of

the History of Computing, vol. 20, no. 1, 1998,

pp. 43–50.

41. E. Webster and N. Statland, ‘‘Instant Data Pro-

cessing,’’ Business Automation, vol. 7, no. 6,

1962, pp. 34–36, 38; N. Statland and J. R. Hille-

gass, ‘‘Random Access Storage Devices,’’ Data-

mation, vol. 9, no. 12, 1963, pp. 34–45;

Anonymous, ‘‘Disc File Applications: Reports

Presented at the Nation’s First Disc File Sympo-

sium,’’ Am. Data Processing, 1964.

42. A.L. Norberg, Computers and Commerce:

A Study of Technology and Management at

Eckert-Mauchly Computer Company, Engineering

Research Associates, and Remington Rand,

1946–1957, MIT Press, 2005.

43. W.L. Jerome and L. Hartford, ‘‘RAMAC at

Work,’’ Systems and Procedures, vol. 8, no. 4,

1957, pp. 30–38, and Anonymous, ‘‘New Ac-

counting Concept Based on ‘Assembly-line’ Pro-

cessing,’’ Management and Business Automation,

1961. Use of the RAMAC is also discussed in

R.H. Gregory, ‘‘Preparation for Logic—An Or-

derly Approach to Automation,’’ Management

Control Systems, D.G. Malcolm and A.J. Rowe,

eds., John Wiley & Sons, 1960, pp. 169–183,

and Anonymous, ‘‘Programming An Informa-

tion Explosion,’’ Business Automation, vol. 14,

no. 5, 1967, pp. 47–50.

44. On the programming of real-time systems in

this period and its relationship to hardware fea-

tures, see W.L. Frank, W.H. Gardener, and G. L.

Stock, ‘‘Programming On-Line Systems. Part

Two: A Study of Hardware Features,’’ Datama-

tion, vol. 9, no. 6, 1963, pp. 28–32.

45. Sabre is discussed in R.W. Parker, ‘‘The SABRE

System,’’ Datamation, vol. 11, no. 9, 1965,

pp. 49–52, and D.G. Copeland, R.O. Mason,

and J.L. McKenney, ‘‘SABRE: The Development

of Information-Based Competence and Execu-

tion of Information-Based Competition,’’ IEEE

Annals of the History of Computing, vol. 17,

no. 3, 1995, pp. 30–57.

46. E.W. Pugh, L.R. Johnson, and J.H. Palmer, IBM’s

360 and Early 370 Systems, MIT Press, 1991.

47. A good idea of the techniques available to ordi-

nary programmers faced with early random-

access storages systems is provided in D.D.

McCracken, H. Weiss, and T.H. Lee’s Program-

ming Business Computers, John Wiley, 1959,

chapter 19. For its evolution, see R.H. Buegler,

‘‘Random Access File System Design,’’ Datama-

tion, vol. 9, no. 12, 1963, pp. 31–33, and R.G.

Canning, ‘‘New Views on Mass Storage,’’ EDP

Analyzer, vol. 4, no. 2, 1966.

48. ‘‘Management and the Computer: A Wall Street

Journal Study of the Management Men Respon-

sible for their Companies’ Purchases of Com-

puter Equipments and Services,’’ Wall Street J.,

1969, Data Processing Management Assoc.

records, CBI 88.

49. Anonymous, ‘‘EDP Salary Survey–1969,’’

Business Automation, vol. 16, no. 6, 1969,

pp. 48–59.

50. Developments in this area were analyzed in

Canning’s ‘‘New Views on Mass Storage’’ and

R.G. Canning, ‘‘Data Management: File Organi-

zation,’’ EDP Analyzer, vol. 5, no. 12, 1967.

51. IDS is often, and with some justification, called

the first DBMS, but the initial version of IDS

lacked some of the features in the Codasyl defi-

nition of a DBMS. Record definitions were

punched directly onto cards in a special format

rather than being defined and modified via a

data-definition language. It did not provide an

interface for ad-hoc querying, or support for

online access, because it was created purely to

support MIACS. It did not provide different

views or subsets of the overall database to dif-

ferent users. Neither did it support multiple

databases simultaneously.

52. An early description of IDS in the context

of the integrated systems project is given in

C.W. Bachman, ‘‘GEICS - General Electric

October–December 2009 23

Integrated Computer System,’’ Charles W.

Bachman, papers, CBI 125, n.d.

53. T. Haigh, ‘‘Inventing Information Systems: The

Systems Men and the Computer, 1950–1968,’’

Business History Rev., vol. 75, no. 1, 2001,

pp. 15–61.

54. C.W. Bachman, ‘‘Oral History Interview by

Thomas Haigh,’’ ACM Oral History Interviews

collection, 25–26 Sept. 2004.

55. E.F. Codd, ‘‘A Relational Model for Large Shared

Databanks.’’ Comm. ACM, vol. 13, no. 6, 1970,

pp. 277–390.

56. K.R. Blackman, ‘‘IMS Celebrates Thirty Years

as an IBM Product,’’ IBM Technical J., vol. 37,

no. 4, 1998, pp. 596–603.

57. An excellent contemporary introduction to the

first public version of IMS is given in J.W. Adams,

‘‘IMS - Information Management System/360,’’

Proc. Share 31, vol. 2, Share, 1968, pp. 231–263.

58. R.L. Patrick, ‘‘Oral History Interview with Tho-

mas Haigh,’’ Computer History Museum, 2006.

59. Many sessions were devoted to GIS at Share 27

in 1966 as well as 28 and 29 in 1967. By 1969,

it had at least some actual users; see J.F. Fry,

‘‘Recent User Applications with GIS,’’ Proc.

Share 33, Share, 1969, pp. 295–296. Its early

capabilities are summarized in Codasyl Systems

Committee, ‘‘Survey of Generalized Data Base

Management Systems,’’ sect. 4, 1969.

60. M. Campbell-Kelly’s, From Airline Reservations

(MIT Press, 2003, p. 147) claims a 1968 date

for Total’s introduction, based on an analyst re-

port. However, the Computer History Museum’s

online Software Histories Collection suggests

that Total was developed during 1969 and for-

mally released in Jan. 1970 with advertisements

in Computerworld.

61. T. Haigh, ‘‘‘A Veritable Bucket of Facts’: Origins

of the Data Base Management System,’’ Proc.

2nd Conf. History and Heritage of Scientific Infor-

mation Systems, M.E. Bowden and B. Rayward,

eds., Information Today Press, 2004, pp. 73–78.

62. SAGE is discussed in P. Edwards, The Closed World:

Computers and the Politics of Discourse in Cold War

America, MIT Press, 1996, and T.P. Hughes, Rescu-

ing Prometheus, Pantheon Books, 1998.

63. Anonymous, ‘‘A Panel Discussion on Time-

Sharing,’’ Datamation, vol. 10, no. 11, 1964,

pp. 38–44, and System Development Corp.,

‘‘Preprint for Second Symposium on Computer-

Centered Data Base Systems, Sponsored by

SDC, ARPA, and ESD,’’ Burroughs Corp.

Records, CBI 90, 1 Sept. 1965.

64. C. Baum, The System Builders: The Story of SDC,

System Development, 1981, pp. 116–121, and

A.H. Vorhaus, ‘‘TDMS: A New Approach to

Data Management,’’ Systems & Procedures J.,

vol. 18, no. 4, 1967, pp. 32–35.

65. R.V. Head, ‘‘Data Base Symposium,’’ Datama-

tion, vol. 11, no. 11, 1965, p. 41.

66. The phrase ‘‘data base management system’’

was used at least once before the renaming of

the DBTG to describe IBM’s forthcoming GIS.

J.H. Bryant and P. Semple, ‘‘GIS and File Man-

agement,’’ Proc. ACM 21st Nat’l Conf., ACM

Press, 1966, pp. 97–107. List processing seems

in retrospect an odd choice, it was perhaps

fashionable from its association with work in

artificial intelligence.

67. Codasyl Data Description Language Committee,

‘‘Codasyl Data Description Language: J. Devel-

opment,’’ US Govt. Printing Office, 1974.

68. Anonymous, ‘‘Codasyl Data Management Re-

port in Print,’’ Data Base, vol. 1, no. 4, 1969,

p. 4. The report was widely circulated, and large

excerpts were published as Codasyl Data Base

Task Group, ‘‘Data Base Task Group Report to

the CODASYL Programming Language Commit-

tee,’’ Data Base, vol. 2, no. 2, 1970, pp. 11–18.

69. Codasyl Data Base Task Group, ‘‘Codasyl Data

Base Task Group: April 1971 Report,’’ ACM,

1971.

70. For example, see T.W. Olle, ‘‘Recent CODASYL

Reports on Data Base Management,’’ Data Base

Systems, R. Rustin, ed., Prentice-Hall, 1972, pp.

175–184, and a series of other articles as well

as participation in a number of discussion pan-

els, such as V.C. Hare, Jr. ‘‘A Special Report on

the SIGBDP Forum: ‘The New Data Base Task

Group Report,’’’ Data Base, vol. 3, no. 3, 1971,

p. 1. Olle tells the story of this era in T.W. Olle,

‘‘Nineteen Sixties History of Data Base Manage-

ment,’’ Int’l Federation of Information Processing

History of Computing and Education 2 (HCE2),

vol. 215, J. Impagliazzo, ed., Springer, 2006,

pp. 67–75.

71. Codasyl Systems Committee, ‘‘Survey of General-

ized Data Base Management Systems,’’ 1969.

This report was until recently hard to obtain out-

side the archival holdings of the Charles Babbage

Inst. but has now been added along with other

Codasyl materials to the ACM Digital Library.

72. Codasyl Systems Committee, ‘‘Feature Analysis

of Generalized Data Base Management Sys-

tems,’’ currently distributed by ACM, 1971.

73. V.C. Hare, Jr., ‘‘A Special Report on the SIGBDP

Forum: ‘The New Data Base Task Group Re-

port,’’’ Data Base, vol. 3, no. 3, 1971, p. 1.

74. Guide/Share Data Base Requirements Project,

‘‘Resolution 69-001-00, November 4, 1969,’’

Proc. Share 34, Share, 1970, pp. 697–712.

75. See material in the proceedings of Share 38

and 40 (March 1973). A good summary of the

work of this group through 1972 is given in

R.G. Canning, ‘‘The Debate on Data Base Man-

agement,’’ EDP Analyzer, vol. 10, no. 3, 1972,

History of DBMS

24 IEEE Annals of the History of Computing

pp. 1–16. I am not sure whether the group

eventually produced actual specifications, but

its work does not appear to have had much in-

fluence on product developments.

76. The Codasyl Data Description Language Com-

mittee’s ‘‘Codasyl Data Description Language’’

dates this decision to Codasyl’s 10th Anniver-

sary Meeting. It is reflected in the DBTG report

issued later that year.

77. The committee’s work on the DML first

appeared as Codasyl Database Language Task

Group, Codasyl Cobol Database Facility Pro-

posal. Ottawa: Dept. of Supply and Services,

Government of Canada, Technical Services

Branch, 1973 and was subsequently issued in

the Cobol J. of Development. Work on these

standards continued into the 1980s, first

through a new committee set up within Coda-

syl, and later at ANSI. This included a FORTRAN

DML, to complement the Cobol DML in the

earlier reports. Codasyl Fortran Data Base Ma-

nipulation Language Committee, ‘‘CODASYL

Fortran Data Base Facility,’’ J. Development, 110-

GP-2, 1977.

78. Performance Development Corp., ‘‘An Interview

With Charles W Bachman (Part II),’’ Data Base

Newsletter, vol. 8, no. 5, 1980, Charles W. Bach-

man papers, CBI 125.

79. C.W. Bachman, ‘‘The Programmer as Naviga-

tor,’’ Comm. ACM, vol. 16, no. 11, 1973,

pp. 653–658.

Thomas Haigh is a historian

of computing and an assis-

tant professor in the School

of Information Studies at

the University of Wisconsin,

Milwaukee. He has published

on many aspects of the his-

tory of computing (see

www.tomandmaria.com/tom). Haigh has a PhD

in the history and sociology of science from the

University of Pennsylvania. He is also Biogra-

phies department editor of Annals and chairs

the SIGCIS interest group for historians of com-

puting. Contact him at thaigh@computer.org.

October–December 2009 25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

