Opening the Beige Box: Materiality and the Evolution of the IBM PC, 1981-1995

Thomas Haigh, University of Wisconsin—Milwaukee

Structure

- The PC Story (well known)
- The IBM PC/AT as a Standard
- Innovation Within Material Constraints
- Initial Conceptualizations
 - Very preliminary

THE WELL KNOWN PC STORY

1981: The IBM PC

- Massively successful
 - Displaces Apple II and CP/M in business world
- Major departure from std. IBM practices
 - Obscure team in Flordia
 - Rapid development
 - Standard, externally developed parts
 - Incl. non-exclusive OS license
- BIOS chip (ROM) is the only unique intellectual property

Clones

- First clones appear in 1982
 - Cheaper
 - Address niches, esp. portable
- Specialized vendors supply
 - Reverse engineered BIOS chips
 - "Chipsets" integrating the capabilities of many standard chips in original IBM designs
- Other components can be ordered to same specifications as original IBM units
 - Sometimes from same suppliers
 - Economies of scale drive down costs rapidly

Two Popular Tests

Microsoft Flight Simulator

Both optimized performance by working at a low level with undocumented hardware features. So only a "100% compatible" machine could run them.

The PS/2 Fiasco

- IBM announces entire new line of PCs
- Abandons existing standards for
 - Cases, power supplies
 Slots (MCA bus)

 - Graphics (VGA)
 - Keyboard/Mouse connectors
- Protects design, demands license fees
- New complex, expensive, integrated physical construction
- The market mostly ignores
 - VGA, keyboard connectors are transplanted
 - Compaq launched 386 machine based on old standards

What is an "IBM PC?"

- Answer changes over time
 - Work by James Sumner, Shane Greenstein
- 1981: Actual IBM PC
 - Circa 1982: Microsoft and DEC, Apricot, etc. launch MS-DOS incompatible machines, fail
- 1984: One of IBM range or "100% compatible)
- 1992: "Industry Standard" machine
 - Evolved from IBM's obsolete models
 - Current IBM models were NOT "IBM PC Compatible"

THE IBM PC/AT AS A STANDARD

Inside the Box: IBM PC/AT

Back of the Box

The PC/AT as Standard

- IBM's last successful attempt to advance the platform
 - 80286 processor
 - Extends some slots to 16 bit
 - Adds switches, lights to front of case
 - New keyboard Caps Lock light, etc.
 - High Density (1.2MB) floppy disks
- Every component changed from PC
 - But backwardly compatible

Motherboard

Expansion Cards

Typical Configuration:

- EGA Graphics card
- Hard Drive Controller card (shown)
- · Parallel Port card
- Serial ports card

By 1990 also common:

- Extended Memory card
- Network Card
- Sound Card

Components of a 1990 Clone

- All are probably from different firms.
- - Power supply unit (screwed into case)
 - Motherboard (bundled with BIOS, chipset)
 - Processor
 - RAM chips
 - Expansion Cards

 Multi/IO Card (parallel, 2xserial, IDE HDD)

 Graphics Card
 - On little rails in drive bays
 Hard Disk Drive
 - Floppy disk drive
- Monitor
- Kevboard MS-DOS 3.3

PC "Manufacturers"

- Only one piece of custom equipment:
 - A little badge for the front
- Barriers to entry
 - Screwdriver
 - Table or floor
 - Enough money to order parts
- Thousands of PC firms
- Little individual leverage with suppliers
- Dell founded 1984 in a dorm room
 - Did have a rich family...

User Innovations

- Users and PC "manufacturers" have similar positions
 - No absolute distinctions between build, tinker, upgrade
 - DIY can be cheaper
- Users choose among huge variety of expansion cards
 - A handful become part of the standard, e.g.
 - Hercules Graphics
 - · Ad-lib and SoundBlaster audio capabilities
- · Later (1990s) a culture of overclocking, cooling, and case modifications develops
 - Strong parallels with hi-fi and automobile cultures

PC vs. Stereo Stack

- Not as different as most people think
 - Pick compatible components (a dozen for PC, maybe 8 for stereo)
 - Connect them together
- But the packaging is different
 - One box versus many
 - Why? Could it be otherwise?

INNOVATION WITHIN MATERIAL CONSTRAINTS

The PC/AT, 1984-1996

- Typical RAM: 0.25 MB -> 32 MB
- High End Processor: 6 Mhz 286 -> 90 Mhz Pentium
- Hard Disk Drive: 30MB -> 2,000 MB
 OS: DOS 3.0 -> Windows 95 or NT
- New Standard Components:
 - Sound
 - CD-ROM
 - Mouse

Innovation within a node

- Happens all the time
 - Higher capacity memory chips
 - Faster processors
 - Bigger hard disk drives (20MB -> 30MB)
 - New revision of DOS (3.0 -> 3.1)
 - Cheaper and more reliable substitutes
- Fairly easy to accommodate
 - Existing interfaces between nodes are unchanged,
 - Or minor tweaks may be needed to other nodes

"Bilaterial" Innovation

- Joint innovations between firms occupying related nodes
 - RAM & Motherboard vendors agree shift from chip packaging to SIMs
 - HDD, controller card, motherboard vendors shift from Seagate to IDE drive interface
 - 3.5 floppy disk: Sony with support from BIOS vendors and Microsoft
 - Lotus, Intel and Microsoft agree standard for Expanded Memory (RAM > 640 KB)
 - VESA Local Bus: New slot design, same physical size.

System Innovation

- Amazing innovation
 - Within standard
 - Without a dominant firm to dictate designs
- What defines a system is what you CAN'T change about it
 - That's what makes it a standard!
- Connections between nodes are hard to change
- Case layout is the hardest
 - Involves many different components
 - Case/PSU market highly fragmented
 - Major disruption lose ability to upgrade

Limits to Integration

- · No way to add new connectors except on expansion card. Limited to
 - Power
 - Keyboard
- Limits integration
- Multi I/O combines Serial x 2, Parallel, HDD controller, FDD Controller, etc
 - $-\,$ By 1990s, increasingly building these & others onto motherboard itself
 - But have to cover expansion slots to use them.

Material Constraints

- Arbitrary decisions from PC or PC/AT teams
- Standard attachment points for components
 - Motherboard can shrink somewhat as long as holes, slots stay in same place
- Height of box is fixed bulky, ugly
- Position/number of holes is fixed
- Position of power switch is fixed

ATX – The Box Changes

- $\bullet\,$ Case design is barrier to innovation by mid-1990s
 - The ONLY thing unchanged from original design!
- Intel expands into motherboard design
 - 1995: Introduces "ATX form factor"
- Many improvements
 - Smaller board size = more elegant boxes
 - Space for parallel, serial, graphics, sound connectors on motherboard
 - Power supply under software control
 - New power connectors

Wintel

- By early 1990s the idea of "IBM PC Compatible" is becoming strained
 - Shift to just "PC", which is incoherent
 - Industry analysts use "Wintel PC"
 - MS Windows
 - Intel Processors
- Emphasizes growing power of these two suppliers
 - In some ways assume the former role of IBM
 - Control the two nodes for which substitution is hardest. Shifting OS or processor = HARD.
 - Interesting question: was this inevitable?

Initial Conceptualization

Business/Econ Literature

- Various terms used to describe these issues
 - Platform Competition
 - Modular Innovation
 - Standards Based Competition
 - Flexible networks of specialized producers
- Hits some fundamental questions
 - Markets vs. hierarchies
 - Vertical integration
- Tend to lack
 - Users
 - Materiality
- Historical richness
- So what can History of Tech/STS perspectives add?

Artifact with Politics?

- Personal computing is often claimed to embed countercultural values
- Hard sell in this case
 - IBM did not want to create an open standard
 - Evolution without clear agency from individual actors
 - Capitalist/libertarian values?

Sentient Scallop?

- The case does have all the power
 - Does it want to thwart innovation and freeze industry structures?

Hughesian System?

- "Large Scale Technological System"
 - Doesn't fit precisely
- Some elements appear useful
 - Technological momentum
 - Reverse Salients
 - Co-evolution of system and social institutions
 - System endures after fall of system builder
- But
 - Complex hierarchy of subsystems
 - Virtuality, abstraction, emulation, backward compatibility
 - Subsystems vying for power Intel vs. Microsoft vs. IBM

Kuhnian Paradigm?

- Not fashionable, but actually works!
- Core meaning of paradigm: exemplar
 - Successful paradigm (IBM PC) is extended, becomes hub of community, directs future work
 - Social institutions grow around it
 - Eventually the very success of the paradigm creates conditions for its replacement
 - "Anomalies" accumulate
 - A wrenching change is made to a new paradigm

Summary

- Let's look at the materiality of standards
- The things you can't change set standards
 - These are the ones that cannot be made virtual
- Co-evolution of physical structure of PC and industry ecosystem of suppliers and producers
- We need better theories to deal with systems made up of subsystems struggling for dominance