
IEEE Annals of the History of Computing 1058-6180/02/$17.00 © 2002 IEEE 5

The term software is newer than most of the
things that it is today used to describe. Many
data-processing pioneers assumed that applying
their electronic computers to specific adminis-
trative tasks would be straightforward. While
they realized that the new machines would
require programming, many expected this to be
a one-time, rapid, and easily compartmentalized
job, firmly subordinate to the larger task of busi-
ness analysis. They soon discovered that appli-
cation program creation was costly, difficult, and
ongoing. By the mid-1950s, they had come to
care a great deal about programming.1 But only
around 1960, however, would a well-informed
data-processing manager have nodded knowl-
edgably if software came up in conversation.
During the 1950s, the term was not used,
although hardware was already well known as a
colloquial term for computer equipment. When
software did achieve currency, it was as hardware’s
complement, describing everything else the
computer manufacturer provided. This ensured
that term’s widespread, if ill-defined, use.2

Software: A fluid concept
By the mid-1970s, accepted linguistic usage of

software had shifted toward “programs and other
operating information used by a computer”
offered by today’s Concise Oxford English
Dictionary. Software became a synonym for com-
puter program, excluding perhaps only a proces-
sor’s microcode and the firmware burned into
permanent memory. However, for much of the
1960s, software was commonly understood in a
narrower sense, as what was later called systems
software—programs used to construct other pro-
grams, or operating systems to control comput-
er hardware. During the early 1960s, computer
manufacturers dramatically stepped up their
efforts in this area. IBM, for example, had grad-

ually broadened the range of system tools it
shipped—from none with the first 701s, to sym-
bolic assemblers and loaders with the 650 and
704, to increasingly complex input–output (I/O)
and control programs with its second-genera-
tion transistorized machines. Cobol’s arrival
challenged every computer manufacturer to pro-
duce compilers for this complex high-level lan-
guage, an effort that frequently strained the state
of the art to the breaking point and beyond.

A 1962 Honeywell advertisement touted the
firm’s expertise in this new field, defining soft-
ware as “automatic programming aids that sim-
plify the task of telling the computer ‘hardware’
to do its job” and observing that the “three
basic categories of software” were assembly sys-
tems, compilers, and operating systems.3 This
was clearly what a Datamation editorial writer
had in mind, when observing that

the well-publicized potentials of software have
been riddled during the past few months with a
barrage of generally well-aimed criticism. The
effect has been one of withdrawn embarrass-
ment; a quiet revision of delivery schedules; a
crash program to check out a compiler or two,
and some judiciously phrased, user-directed pleas
for compassion and patience.4

Likewise, when Asher Opler, then responsible
for programming at Computer Usage Corpora-
tion, published a 1964 article in Datamation on
the “Measurement of Software Characteristics”
he confined his attention entirely to “automatic
programming and operating systems (software).”
Opler suggested that these programs so influ-
enced a computer’s real performance that it was
absurd to continue to evaluate a computer’s suit-
ability for an application on the basis of its hard-
ware capabilities alone.5

Software in the 1960s as Concept,
Service, and Product
Thomas Haigh
Colby College

Packaged application software established a small but important
corporate niche during the 1960s. The author charts the shifting
meaning of the word software, situates the first software companies
within the overall computer services market, and probes the
attractions and limitations of the first packages from the viewpoint of
their potential purchasers: managers of data processing.

Software’s other implicit definition at that
time, broader but equally unfamiliar today,
included not only systems tools but also any
combination of tools, applications, and servic-
es purchased from an outside vendor. This
ambiguity was captured at the 1963 meeting of
Fred Gruenberger’s informal “Rand Sympo-
sium.” The symposium took place every year
immediately before the Joint Computer Con-
ference, giving an invited crowd of computing
and data processing luminaries a chance to dis-
cuss the issues of the day. When the possibility
of making software production an engineering
activity was raised, participants discovered that
they lacked a common definition of software.
While one participant suggested that “many of
us refer to software as programs to be used by
programmers,” Frank Wagner, recently moved
from North American Aviation to fledgling
software company Informatics, countered that

I always use the term to mean anything that isn’t
clearly hardware or engineering design.... not
only applications programming, but the writing
of specification for programs, the giving of advice
to people who might want to use computers, the
installation manuals, etc.6

Wagner was a prominent member of the south-
ern California computing community, having
played important roles in both the SHARE user
group and the Association for Computing
Machinery. Bob Patrick, a well-known Califor-
nia computer consultant, then recently depart-
ed from leading computer services firm CEIR
(formerly Council for Economic and Industrial
Research), took issue with this definition. What
he challenged was not the inclusion of non-
programming services but of application pro-
grams, saying “I don’t believe that application
packages are software,” regardless of who devel-
oped them.6

A very broad definition of software was
endorsed as late as 1967 by EDP Analyzer,
Richard Canning’s authoritative newsletter.
When it repeated a claim by Walter F. Bauer of
Informatics that the software market share held
by independents (companies that did not make
computers) had risen from 1 percent in 1960 to 3
percent in 1965 and would reach 10 percent by
1970, it also quoted Bauer’s software definition:
“systems analysis and design, programming and
computer-based services, accomplished by users,
computer manufacturers and others.” Bauer
argued that independent producers were rapidly
shifting focus from systems software toward
applications programs, which he estimated
would rise to about 50 percent of their revenues.7

As real-time systems expert Robert V. Head
aptly observed the next year, “The term ‘soft-
ware’... is subject to redefinition from time to
time and to varying degrees of individual inter-
pretation.” His own definition included

not only the series of program instructions need-
ed to direct the computer to do a particular job,
but also ... the entire process of systems analysis
and design, programming, testing and imple-
mentation, as well as the documentation that
accompanies this process.8

Not all “software” was programs, and not all
programs were “software.” According to some
of these definitions, at least, a given piece of
code might have been considered software if
obtained from another firm, but simply a pro-
gram if written in-house. Yet a contract for an
external group to perform programming work
of any variety,—even testing or documenta-
tion—might have been considered a software
project. Because of these conceptual shifts, con-
temporary readers may easily misunderstand
the intended meaning of many sources from
the 1960s. Early discussions of problems in the
“production of software,” or the “software
industry,” were invariably referring to some-
thing other than what we would today under-
stand by these terms. For example, much early
discussion of a “crisis” in software or of software
development problems was actually concerned
entirely with systems software.9 Likewise, com-
plaints about the rising proportion of computer
costs attributed to software, or the problems of
software project management, generally
referred to the hidden costs of systems software
bundled with computer hardware, not to the
ever-present cost of in-house application pro-
gramming. In contrast, estimates of the soft-
ware industry’s size and future growth usually
referred to the entire market for separately pur-
chased computer-related services and code.10

Toward the packaged application
Those, like Bauer, who favored a broad defi-

nition of software essentially used the term to
describe any externally provided code or services.
This conflation of independently produced pro-
grams and independently offered programming,
analysis, and advice made considerable sense
during the early 1960s. There was, as yet, no such
thing as a shrink-wrapped application package.
Most application programs were written in-
house from scratch, although firms increasingly
relied on operating systems and programming
tools from manufacturers. Early interest in pack-
ages stemmed from the reasonable, generally

6 IEEE Annals of the History of Computing

1960s’ Software as Concept, Service, Product

held idea that it might be more effective to take
an existing program and modify it than to write
an entirely new one. Computer manufacturers
supplied such “canned” applications free with
their machines. A few of these packages enjoyed
considerable success, such as IBM’s early inte-
grated package ’62 CFO, which business histori-
an JoAnne Yates has shown eventually found
hundreds of users among medium-sized insur-
ance companies. According to Yates, many of
these companies would have been unlikely to
order the relatively inexpensive IBM 1401 com-
puter it ran on had the package not lifted most
of the programming burden from their data-
processing staff.11

Many of the earliest software firms relied on
governmental, particularly military, contracts.
The importance of RAND Corporation spin-off
SDC to computing’s early history and to the
SAGE project is well known. Martin Campbell-
Kelly has suggested that large firms producing
highly complex systems of this kind satisfied a
market almost entirely distinct from the needs
of mainstream business for low-cost application
packages. Many offered computer services as
part of a broader range of scientific or technical
services. The Planning Research Corporation
(PRC), for example, was founded in 1953 by
three scientists, but a stream of defense contracts
helped it grow to 507 professional employees by
1965, more than half of whom worked on com-
puter-related issues. (Despite this, the firm had
yet to install a single computer; it rented com-
puter time as needed.)12

The largest software companies (in this
broad sense) included PRC, the Computer
Sciences Corporation (CSC), CEIR, Computer
Applications Inc., and Informatics. These firms
were of very different character from Microsoft
and other firms that spring to mind when soft-
ware is mentioned today. Their work was closer
to the consulting and services tasks today
undertaken by accounting firms, independent
specialists like AMS and EDS and computer
vendors like IBM. Then, as now, small and flex-
ible companies satisfied most of the demand
for computer services. Barriers to entry were
low, and stock options lured skilled program-
mers to the start-up firms. A spate of initial
public offerings around 1966 led investors to
pour money into the field, which was soon
crowded by an estimated 2,000 companies.

Independent software companies did not gen-
erally attempt to compete head-to-head by sell-
ing their own skeleton application code for
companies to adapt. They did, however, under-
take similar projects for a number of different cus-
tomers, building a library of reused routines,

acquiring expertise, and finding themselves able
to complete additional projects better and cheap-
er. After a certain point, custom applications with
recycled code gradually evolved, into something
more like standard packages. It was, however, the
appeal of getting a truly tailored solution rather
than a generic program that had steered cus-
tomers away from the computer vendor toward
the software company in the first place.

By the mid-1960s, application packages
were becoming better established. EDP Analyzer
reported that

The change in interest in application packages
became evident [in 1965]. While some interest
had existed previously, it appeared to be quite
local. The arrival of the general purpose inven-
tory forecasting packages may have been the trig-
gering influence for the growing popularity of
packages.13

Inventory management was a most popular
application for data-processing departments
looking to do more than simply automate cleri-
cal jobs such as payroll. The operations research
aspects of this task, however, posed considerable
challenges to corporate programming staffs.13

The first independently produced programs
to be licensed as standard packages apparently
were systems software such as file management
and report generation utilities. These filled nich-
es left empty by the computer manufacturers’
own software. Perhaps the most important early
independent software package was Informatics’
Mark IV file management system, which like
many early packages, evolved from work begun
as a custom development project. First offered
in 1967, it helped propel Informatics to become
a leading 1970s’ software firm. Informatics, as
we have seen, had a much broader view of soft-
ware and continued to derive most of its rev-
enue from custom programming and consulting
work. As the 1960s closed, Bauer suggested that,
despite earlier optimism, the total market for
packaged software constituted only about 10
percent of that for contract development work.14

In 1968, when Business Automation magazine
interviewed him, Head was already established
as a leading software expert. He had worked on
the pioneering ERMA (electronic recording
method of accounting) bank automation and
SABRE airline reservation systems in a career that
had already involved working for GE and IBM,
in the banking industry, and in senior IT-related
positions for consulting firms Touche, Ross,
Bailey & Smart and CSC. Head had just formed
his own company, the Software Resources
Corporation, which he discusses elsewhere in

January–March 2002 7

this issue. He suggested that “a sort of software
explosion” had occurred in 1967, caused by a
shift toward more complex management infor-
mation system (MIS) applications, a change that
demanded a level of programming and system
design skills rarely present in corporate data-
processing departments. Head, who, given the
breadth of his own work experience, was well
placed to know, suggested that “at this point vir-
tually no one is making a substantial profit on
packaged software, although the potential seems
very great.”15

The assumption that hardware and operating
systems should be standard for all users while
application software should be altered for differ-
ent industries was not yet hard and fast. Head
believed that hardware, programming languages,
and operating systems would prove more efficient
when adapted to industry sectors such as banking
or retailing. Odd as this seems given present expe-
rience, we must recall that the construction of
early real-time applications such as SABRE had
required the building of specially designed oper-
ating systems—in this case, by a collaboration
between IBM and American Airlines.

Such operating systems were closely opti-
mized for the programs they would run along-
side. The first operating system for the IBM
701/704 was produced by the SHARE user con-
sortium. Some firms tackling real-time business
applications coded their own operating sys-
tems. Even when firms used vendor-supplied
operating systems, the operating system had
often been tweaked or patched by individual
users. Some companies even tried to write their
own operating systems for System/360 com-
puters, often in conjunction with a plan to
build an integrated, online MIS.16

The line between programming language
and application software was also unclear. In a
1965 address to a combined meeting of San
Diego data-processing societies, Paul H.
Rosenthal of CSC suggested that application
packages were a blind alley:

There is actually no extensive production being
done today utilizing application packages .…
These types of packages have not been widely
accepted, and outside of some very selected
industries or functional areas are not considered
by most people to be the answer to reducing the
cost of applications programming.17

Citing the success of generalized file man-
agement systems and specialized language com-
pilers in the scientific field, he suggested that
the long-term answer was not “packages as they
are currently constructed” but new methodolo-

gies coupled with “application compilers” able
to go straight from requirements to code.
Within two years, he expected these systems to
let line managers write their own applications
as needed via teletype. This would facilitate
construction of an MIS and eliminate tradi-
tional application programming, while giving
data-processing specialists “a far higher status
in the total managerial hierarchy.” Skepticism,
he insisted, was “no longer possible.”17

There was thus no absolute line between sys-
tems software and applications programs, and
neither was it clear that the former would invari-
ably come from the hardware manufacturer and
the latter from in-house or independent efforts.
Nor was it clear that most companies seeking
access to an externally produced program would
run it on their own hardware or operate it using
their own personnel. From the earliest days of
computing, firms such as payroll-processing
giant ADP had sold bundles of services based on
proprietary software. From the mid-1960s, facil-
ities management operations such as Ross Perot’s
EDS were eager to operate computer installations
under contract. In some cases, this included pro-
gramming services and standardized packages.
As interest in networking and remote access to
computers increased, many expected these mod-
els to become the norm. Time-sharing, a means
of giving several users real-time access to a single
computer, was viewed as the basis on which
“computer utilities” would be built. Under this
model, thousands of users would subscribe to
giant networks, using terminals to access hard-
ware and software running on remote comput-
ers. Well over a hundred companies rushed to
enter the time-sharing business.18

Time-sharing services were initially popular
with scientists and engineers, who liked the con-
venience of interactive computers. The services
offered libraries of useful programs and subrou-
tines to assist with calculations. As the market
became crowded toward the end of the 1960s,
and time-sharing companies targeted the poten-
tially larger administrative computing market,
they sought to differentiate themselves by offer-
ing applications packages rather than just com-
puter time. A firm would effectively lease
applications as a package, with computer hard-
ware, software, and services thrown in. GE (the
market leader) offered a package to banks; BBN
(a computer services firm now best known for its
contract work on Arpanet), a package for archi-
tects; and Univac had ambitious plans to build
nationwide networks to serve specific industries.
Its integrated package of billing, accounting,
inventory, and other operations was offered ini-
tially to the wholesale wine and liquor industry.

8 IEEE Annals of the History of Computing

1960s’ Software as Concept, Service, Product

While this was ultimately not a sizable market,
continued attention to the concept left managers
uncertain whether the application packages of
the 1970s would be installed on their own com-
puters or rented through time-sharing.19

User views on software packages
How did the corporate data-processing man-

agers of the 1960s feel about packaged applica-
tion software? A survey of the magazines and
journals most closely associated with this com-
munity (Business Automation, Datamation, and
EDP Analyzer) offers hints, and several impor-
tant articles from these sources are discussed
below. From 1967 onward, a small but growing
number of subscribers could turn to the
International Computer Program directories
(discussed elsewhere in this issue). But the most
important evidence is negative—akin to
Sherlock Holmes’ realization that a dog had
failed to bark during the night. While a good
number of articles discussed the software indus-
try’s boom, and time-sharing’s revolutionary
potential, there were few nuts-and-bolts treat-
ments of how to purchase or evaluate applica-
tion software packages. Throughout the decade,
packages remained relatively unimportant as a
source of application programs, or even as part
of the overall software and services market.

Like anyone keeping one eye on the busi-
ness press and one on the stock market, data-
processing managers were exposed to an
enthusiasm for the software industry, which
had quite outstripped its accomplishments. As
Head observed in 1970, at the tail end of the
first market bubble in software stocks,

For a long time now, the software industry has
been a prime concept of interest on the part of
investors, with resultant enormously inflated stock
values. Price-earnings ratios of eighty to one seem
normative, and infinity to one not unusual, in the
case of numerous companies that have never
turned a profit. There has been almost a compul-
sion to ‘go public’ on the part of many marginal
firms, and millions of dollars have been obtained
from the public through such offerings.20

One remarkably enthusiastic statement came
in 1970, from Pabst Brewing’s data-processing
director. The author claimed that the new gen-
eration of packaged applications was much
superior to the old, manufacturer-supplied pack-
ages. As a result, “Low supply and high demand
for in-house systems and programming talent
may not be as long lived as many think.” He
seized on packaged application software as one
in a long line of technologies destined to end

corporate application programming as then
known. (Earlier technologies of this kind includ-
ed “automatic coding,” high-level languages,
and decision tables). The data-processing depart-
ment’s entire analysis, programming, and main-
tenance function could, he claimed, be replaced
with three people: a data-processing coordina-
tor, a software/applications analyst to choose
packages, and a single package-modification
programmer to configure them. This enthusi-
asm apparently reflected a utopian dream rather
than hard-won experience.21

The programming of administrative appli-
cations remained an activity performed largely
by a company’s own data-processing staff. In
1969, the Wall Street Journal surveyed almost
800 executives with responsibility for comput-
er procurement and found that 44 percent
claimed all programs used were written in-
house; another 38 percent said that many were.
Even among the largest companies (the sector
identified by the survey as the primary users of
what it called “Programming [Software]
Services”), just 45 percent of respondents to
this question reported any purchase of outside
programming (a category including both pack-
ages and services). These same companies relied
more heavily on bundled programs supplied by
the manufacturers of their computers, utilized
by 80 percent of responding firms.22

Any software acquisition—packaged or cus-
tom; system or application—ultimately became a
set of make-or-buy questions. No package entire-
ly removed the need to “make” some elements
of the system, but it was sometimes possible to
reduce this burden. Unlike the hopeful schedules
and fuzzy definitions associated with in-house
development, packaged software was a known
quantity. Its costs and capabilities could be meas-
ured. In addition, many companies found their
programming and analysis teams chronically
overworked, with a large backlog of urgent tasks.
Packaged software promised to alleviate this.

During the second half of the 1960s, most
data-processing departments were engaged in
a transition from second-generation machines
(such as the IBM 1401 or 7040 series) to third-
generation machines such as those in the
System/360 range. In the process, they used
complex operating systems, large disk drives,
and terminals for the first time. Since it would
take a major programming effort to reimple-
ment their existing systems for this new envi-
ronment, the transition to third-generation
systems was an obvious moment at which to
consider the shift to packaged applications.

This approach held the additional promise
that different applications from the same vendor

January–March 2002 9

might be easier to integrate than in-house pack-
ages that had never been properly coordinated.
CSC, for example, offered a number of general-
ized applications to banks to handle common
applications such as payroll, personnel records,
stockholder records, and general ledger. Such
applications packages were somewhat general-
ized—modification and maintenance would still
be necessary—but more flexible than a typical
program. While CSC charged each customer
when new options and capabilities were deliv-
ered, bug fixes were free of charge and only a
modest fee was levied for the basic updates to
meet new legal regulations. As a result, it was
realistic to hope that use of a package would dra-
matically cut the cost of program maintenance.23

In 1968, Head used a Datamation article to
give data-processing managers what was then
their most detailed, practical guide to packaged
software acquisition. He identified application-
package sources as manufacturers (in whose
products he had little faith), user groups (some of
which maintained extensive lists of user-submit-
ted software), and software companies. Whatever
the source, a package would likely require sub-
stantial modification. A well-designed commer-
cial package could easily pay for itself by lowering
the overall project cost, especially if this also led
to reduced maintenance costs. Head suggested
that commercial applications generally cost
between $2,000 and $20,000, representing 10 or
20 percent of the original development cost.
While acknowledging that “[t]here may still be
some resistance on the part of data processing
managers accustomed to obtaining software ‘free’
from the computer manufacturers,” he argued
that such reliance might prove a false economy.24

Head’s advice for the evaluation of software
packages was more pragmatic. He suggested that
data-processing managers assign their own
weights to each of the following factors and score
packages under consideration accordingly:

• package cost (including indirect costs for
modifications, training, installation, con-
version, running, maintenance, and so on),

• package quality,
• design features (file organization, control

and audit features, programming tech-
niques, flexibility, and so on),

• generality (“among the most important
package criteria”),

• expandability (although an overgeneralized
package might prove inefficient),

• operational status (how extensively used
and bug-free a package is),

• equipment configuration needed to run it,
• programming language it is written in,

• documentation (separate descriptions required
on each system level: program, operations,
and user),

• installation support (must be agreed in
advance; may include file conversion and
training assistance), and

• maintenance (“the acquisition terms for a
package should include some assurance of
error-free operation for a reasonable period
of time”).25

The list demonstrates that software acquisition
remained complex. The importance of the pro-
gramming language used, program documenta-
tion, and program expandability illustrate that an
application program was subject to extensive cus-
tomization. Programming techniques of the era
made it hard to produce a program that would
run on less-powerful hardware while taking
advantage of larger memories, disk drives, and the
like when available. Similarly, unnecessary fea-
tures might slow down a program and make it
harder to maintain. As Head warned in a later
guide to the same topic, computer staff might not
prove a package’s most reliable judges. While a
manager was to some extent at the mercy of their
judgments, he or she must also remember that
their “professional pride” might lead them away
from cost-benefit calculations toward the convic-
tion that they could produce a better package.
Said Head: “Experience has shown that an outside
package, no matter how estimable, can be torn
asunder by an astute technician bent on ferreting
out and magnifying all possible deficiencies.”26

In a short 1971 book, Head surveyed the state
of the software industry at that time. He found
that some packaged application programs were
supplied in Cobol, for compilation on a range of
machines from different manufacturers. Others
were more closely tied to particular machines
and operating systems. His analysis of the mar-
ket for payroll programs, a leading application of
the period, was particularly informative. Most
such programs cost about $20,000. Two of the
most successful appeared to have sold about 75
copies each. One of these, the CSC payroll sys-
tem, was slow and required a large, 65-Kbyte
memory. It was relatively easy to use and install,
reducing the need for skilled computer person-
nel. However, this usability came at the expense
of flexibility—reports not needed for a particular
payroll run, for example, could not be turned
off.27 Such programs continued to appeal prima-
rily to companies without the staff, money, or
time to develop a better system of their own.

IBM’s decision, in 1969, to unbundle its soft-
ware from its hardware is usually considered
crucial to the establishment of a viable market

10 IEEE Annals of the History of Computing

1960s’ Software as Concept, Service, Product

for packaged application software.28 While
undoubtedly important, this event appears to
have reinforced shifts already under way, and
its effects were not felt immediately. In the early
1970s, most application software was still pro-
duced by user organizations; most of the pack-
ages used continued to come from IBM and
other computer manufacturers. While the
entrenchment of the System/360 architecture
and the acceptance of standardized high-level
languages (most particularly Cobol) provided a
larger potential market than ever before, this
market remained largely untapped. In his 1971
book, Head suggested that although “the poten-
tially great profits” were associated with a

potential market for these systems in the tens of
thousands ... even highly successful packages have
at this point sold only in the neighborhood of
fifty systems with a mere handful of outstanding
success stories claiming sales in the hundreds.29

In the subsequent decade, firms such as
Management Science of America (MSA) and the
University Computing Corporation (UCC) final-
ly managed to nurture a market for packaged
applications software that grew steadily and
proved profitable. (The largest and most suc-
cessful firms, however, still tended to specialize
in systems software.) Change in computer usage
lagged expectations, as firms ported their appli-
cations from one machine to another, using
emulation and continual patching to support
ancient application code on new hardware.

The challenge in application program acqui-
sition has always been to optimize the fit of a sys-
tem to the requirements of a particular business
while minimizing the amount of specially writ-
ten code and lowering the cost of ongoing main-
tenance. Packaged applications ultimately played
an important part in reconciling these goals, as
part of a broader repertoire of complementary
techniques including generalized I/O routines,
high-level languages, structured programming
and design, CASE (computer-aided software engi-
neering) and RAD (rapid application devel-
opment) tools, database management systems,
and code reuse. (The latter eventually gave rise to
object orientation.) These techniques were sup-
ported by substantial improvements in operating
system technology and computer architecture.
Meanwhile, software packages and services
remained closely intertwined in how they were
bundled, sold, and used.30

We cannot hope to understand software’s
early history without understanding the work
done inside user organizations to adapt and
supplement packages. A narrow understanding

of software, based on experience of the shrink-
wrapped PC-software market of the 1980s, will
not help here. Indeed, such a conception
might instead mislead the contemporary ana-
lyst as well as the historian. Into the 1980s,
Informatics continued to derive more of its
revenues from custom development and con-
sulting services than from packaged software
sales. Even today, the shrink-wrapped model
applies only to a small part of the business soft-
ware world, and many analysts believe it to be
in terminal decline.31 Installing complex pack-
ages such as those offered by SAP, for example,
requires a tremendous configuration and cus-
tomization effort. Moreover, the proliferation
of programming tools such as databases, object
technology, and rapid application develop-
ment systems has been responsible for the pro-
duction of more custom application software,
not less.

A better understanding of the origins of pack-
aged software enriches our understanding of its
likely future in at least two ways. First, it reminds
us that different models coexist and that pack-
aged software, custom programming, and con-
sulting services are complementary. Services are
usually inseparable, most programming effort is
still devoted to custom applications, and the
transition from custom development to package
remains a continuum. Second, a better under-
standing teaches us that change is invariably
slow and incomplete and that no new model—
be it time-sharing in the 1960s or Internet-based
application service providers today—can be
expected to fill all niches or to sweep away exist-
ing technologies overnight. Had the technolo-
gy investors and entrepreneurs of the past few
years paid more attention to history, their dol-
lars and their dreams might not have been lost
to it with quite such rapidity.32

References and notes
1. On the early history of data processing and the

role of programming within it, see T. Haigh, “The
Chromium-Plated Tabulator: Institutionalizing an
Electronic Revolution, 1954–1958,” IEEE Annals of

the History of Computing (hereafter called Annals),
vol. 23, no. 4, Oct.–Dec. 2001, pp. 2-31.

2. For discussion of the earliest known use of “soft-
ware” in the context of computers, see F.R.
Shapiro, “Origin of the Term Software: Evidence
from the JSTOR Electronic Archive,” Annals, vol.
22, no. 2, Apr.–June 2000, pp. 69-71. Shapiro
discusses a 1958 article by mathematician John
W. Tukey, who used the term to describe
automatic programming aids (such as compilers
and assemblers) of the type provided by comput-
er manufacturers.

January–March 2002 11

3. Honeywell, “A Few Quick Facts on Software,”
Business Automation, vol. 7, no. 1, Jan. 1962, pp.
16-17.

4. “Software on the Couch,” Datamation, vol. 7, no.
11, Nov. 1961, pp. 23-24. A similar definition of
software as a “programming system package”
can be seen in H.R.J. Grosch, “Software in Sick-
ness and Health,” Datamation, vol. 7, no. 7, July
1961, pp. 32-33. See also “The Master Plan for
Kludge Software,” Datamation, vol. 8, no. 7, July
1962, pp. 41-42.

5. A. Opler, “Measurement of Software Characteris-
tics: Evaluation Techniques,” Datamation, vol. 10,
no. 7, July 1964, pp. 27-30.

6. F. Gruenberger, “Rand Symposium 6,” in Rand
Symposia Collection (CBI 78), Charles Babbage
Institute, Univ. of Minnesota, Minneapolis (here-
after, CBI), 1963. This discussion in many ways
precipitated the much better known NATO Con-
ference on Software Engineering held in 1968
and 1969. Participants discussed parallels
between hardware and software, the difficulty of
managing programmers, the importance of liter-
ary style in programming, and the applicability of
engineering techniques to software. Participants
included Barry Gordon, Bob Patrick, Richard
Hamming, Francis V. Wagner, and M.D. McIllroy.

7. Bauer offered his definition during a Fall 1965
address to the Los Angeles chapter of the ACM.
See “Independent Software Companies,” EDP

Analyzer, vol. 5, no. 11, Nov. 1967.
8. For Head’s discussion and his own definition, see

R.V. Head and E.F. Linick, “Software Package
Acquisition,” Datamation, vol. 14, no. 10, Oct.
1968, pp. 22-27.

9. See particularly H.R.J. Grosch, “Software in Sick-
ness and Health,” Datamation, vol. 7, no. 7, July
1961, pp. 32-33, and “Software on the Couch,”
Datamation, vol. 7, no. 11, Nov. 1961, pp. 23-24.
One of the earliest articles to imply our modern
definition of “software costs” as including in-
house development of application programs is
H.A. Lustig, “The High Cost of Software,” Business

Automation, vol. 13, no. 5, May 1966, pp. 37-38.
Conversely, most of the crises attributed to data
processing in this period had little direct relation
to software—see D.R. Daniel, “Management
Information Crisis,” Harvard Business Rev., vol. 39,
no. 5, Sept./Oct. 1961, pp. 111-121, or A.E.
Keller, “Crisis In Machine Accounting,” Manage-

ment and Business Automation, vol. 5, no. 6, June
1961, pp. 30-31, for examples.

10. In perhaps an extreme example, one author pre-
sented service bureaus, contract programming,
consulting services, personnel services, package
suppliers, proprietary software services, facilities
management, “dedicated applications
companies,” time-sharing services, providers of

turnkey systems, and educational services as the
11 components of the “software service” market.
See F.A. Frank, “Software Services: An Outside
Outlook,” Business Automation, vol. 16, no. 11,
Nov. 1969, pp. 55-61.

11. J. Yates, “Application Software for Insurance in the
1960s and Early 1970s,” Business and Economic

History, vol. 24, no. 1, Fall 1995, pp. 124-126.
12. M. Campbell-Kelly, “Development and Structure

of the International Software Industry,” Business

and Economic History, vol. 24, no. 2, Winter 1995,
pp. 73-110. On the Planning Research Corp., see
“The Changing Software Market,” EDP Analyzer,
vol. 4, no. 7, July 1966.

13. “Application Packages: Coming into Their Own,”
EDP Analyzer, vol. 5, no. 7, July 1967.

14. For the Mark IV, see M. Campbell-Kelly, “Devel-
opment and Structure of the International Soft-
ware Industry,” Business and Economic History,
vol. 24, no. 2, Winter 1995, pp. 73-110; J.A. Post-
ley, “Mark IV: Evolution of the Software Product,
a Memoir,” Annals, vol. 20, no. 1, Jan.-Mar.
1998, pp. 43-50; and R.L. Forman, Fulfilling the

Computer’s Promise: The History of Informatics,

1962–1982, Informatics General Corp., 1984.
15. “The Software Explosion,” Business Automation,

vol. 15, no. 9, Sept. 1968, pp. 24-29. Head went
on to help found SMIS, the Soc. of Management
Information Systems (known today as SIM), and
spent the latter part of his career in senior IT posi-
tions with the US federal government and as a
consultant in the same area.

16. Head earlier detailed his concept of industry-
specific computing platforms in R.V. Head, “Old
Myths and New Realities,” Datamation, vol. 13,
no. 9, Sept. 1967, pp. 26-29. For an example of a
homebrew 360 operating system, see L.F. Zaino,
“How Does an Operating System Work?,”
Systems & Procedures J., vol. 19, no. 1, Jan./Feb.
1968, pp. 20-23. On the history of MIS and its
relationship to the promotion of third-generation
computers, see T. Haigh, “Inventing Information
Systems: The Systems Men and the Computer,
1950–1968,” Business History Rev., vol. 75, no. 1,
Spring 2001, pp. 15-61.

17. P.H. Rosenthal, “Future Programming of
Computer Applications,” Systems & Procedures J.,
vol. 18, no. 1, Jan./Feb. 1967.

18. Although the computer utility concept is general-
ly believed to have originated with M.
Greenberger, “The Computers of Tomorrow,”
The Atlantic Monthly, May 1964, pp. 63-67, it
goes back at least five years earlier to the 1959
conference presentation published as A.O. Mann,
“A Publicly Regulated System of Management
Control Services,” in Management Control

Systems, D.G. Malcolm and A.J. Rowe, eds., John
Wiley & Sons, New York, 1960, pp. 245-263. For

12 IEEE Annals of the History of Computing

1960s’ Software as Concept, Service, Product

an early discussion of its relevance to data
processing, see R.E. Sprague, “The Information
Utilities,” Business Automation, vol. 12, no. 3,
Mar. 1965, pp. 42-47.

19. E.H. Menkhaus, “Time Sharing is Everybody’s
Thing,” Business Automation, vol. 16, no. 9, Sept.
1969, pp. 26-35 and p. 38; and R.V. Head, A
Guide to Packaged Systems, Wiley-Interscience,
New York, 1971. Others believed that the crucial
advantage of the computer utility would come
with the automatic interchange of orders,
payments, and other information between firms
that would follow once different businesses used
shared computers to hold their information.
These feelings were only reinforced in 1970, as a
collapse in the stock market bubble for software
and time-sharing firms caused scores of start-up
firms to begin unraveling. As Business Automation

reported at the time, the future of time-sharing
was seen to lie not in the general-purpose com-
puter utility but in the provision of “industry-
oriented software on a national basis …. Time
sharing has become an information transfer busi-
ness and not a computation or calculation busi-
ness.” See E.J. Menkhaus, “Time Sharing: More
Glitter than Gold,” Business Automation, vol. 17,
no. 11, Nov. 1970, pp. 36-42.

20. R.V. Head, “Twelve Crises—Comments on the
Future of the Software Industry,” Datamation,
vol. 16, no. 3, Mar. 1970, pp. 124-126.

21. J.E. Hackney and N.L. Paul, “The Wheel Exists,” J.
Systems Management, vol. 21, no. 5, Nov. 1970,
pp. 40-41.

22. Wall Street J., “Management and the Computer: A
Wall Street Journal Study of the Management Men
Responsible for their Companies’ Purchases of Com-
puter Equipments and Services,” Data Processing
Management Assoc. Records (CBI 88), CBI, 1969.

23. “Application Packages: Coming into Their Own,”
EDP Analyzer, vol. 5, no. 7, July 1967.

24. R.V. Head and E.F. Linick, “Software Package
Acquisition,” Datamation, vol. 14, no. 10, Oct.
1968, pp. 22-27.

25. Ibid., pp. 25-26.
26. R.V. Head, A Guide to Packaged Systems, Wiley-

Interscience, New York, 1971.
27. Ibid., pp. 41-43.
28. Unbundling has been the subject of considerable

historical inquiry, including several articles in this
issue. For contemporary reaction, see A. Dratell,
“Unbundling: The User Will Pay for the Works,”
Business Automation, vol. 16, no. 8, Aug. 1969,
pp. 36-41.

29. R.V. Head, A Guide to Packaged Systems, Wiley
Interscience, New York, 1971, p. 66.

30. For a critical discussion of the largest mainframe
software companies at the start of the 1980s, see
S.T. McClellan, The Coming Computer Industry

Shakeout: Winners, Losers, and Survivors, John
Wiley & Sons, New York, 1984, pp. 240-263.

31. Some software remains in the public domain,
particularly in the Linux area where some compa-
nies attempt to give away the code while charg-
ing for support and services. In the server and
enterprise software markets, software is leased
annually rather than purchased and is often
priced together with service and support
contracts. Current industry opinion suggests a
general move toward the use of online software
(via application service providers—the time-
sharing systems of the 21st century) and the
annual leasing of desktop application software.

32. On the recent travails of the ASP industry, see C.
Koch, “Boy, That Was Fast!,” CIO Magazine, 15
Nov. 2000, http://www.cio.com/archive/111500/
boy.html [current as of 16 Jan. 2002]. For a
dismissal of the concept as “rehashed time-sharing
service bureaus,” see B. Lewis, “Rather than Focus-
ing on Best Technologies, Let’s Look at and Learn
from the Year’s Worst,” Infoworld, 26 Jan. 2000,
http://staging.infoworld.com/articles/op/xml/01/
01/29/010129oplewis.xml [current as of 16 Jan.
2002].

Acknowledgments
The author would like to thank Burton Grad
and Robert V. Head for their encouragement
and contributions and the referees for their
comments on the draft version. This research
has been supported by fellowships from the
Charles Babbage Institute of the University of
Minnesota and the IEEE History Center.

Thomas Haigh is teaching at
Colby College and completing a
PhD in the history and sociolo-
gy of science at the University of
Pennsylvania. His dissertation,
Technology, Information, and
Power: Administrative Technicians
in the American Corporation,

1917–1975, is the first full-length synthetic history of
the corporate use and management of information
technology during that period. He holds a BSc and
MEng in systems integration from the University of
Manchester, UK. Fellowships include a Fulbright
Award, the IEEE Life Member Fellowship in Electrical
History, and the Tomash Fellowship from the Charles
Babbage Institute.

Readers may contact Thomas Haigh at tdhaigh@
colby.edu; http://www.tomandmaria.com/tom.

For further information on this or any other com-
puting topic, please visit our Digital Library at
http://computer.org/publications/dlib.

January–March 2002 13

